
Computational Vision
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Daniel Kersten
Lecture 10: Image processing

Initialize

‡ Read in Add-in packages:

In[14]:= Off@General::"spell1"D;
<< "BarCharts`"; << "Histograms`"; << "PieCharts`"

SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

‡ The input 64x64 image: face

In[18]:= width = Dimensions@faceDP1T; size = width;

hsize =
width

2
; hfwidth = hsize; height = Dimensions@faceDP2T; face;

gface = ArrayPlot@faceD

Out[19]=

Outline



Outline

Last time

Single - channel spatial filtering
A fixed choice of lower and upper bound spatial frequencies, r0 and r1, respectively.

In[20]:= filter@r0_, r1_D :=

Table@If@HHx - hsizeL^2 + Hy - hsizeL^2 > r0L &&
Hx - hsizeL^2 + Hy - hsizeL^2 < r1, 1, 0D , 8x, 1, size<, 8y, 1, size<D;

In[21]:= Manipulate@
tt = Chop@InverseFourier@Fourier@filter@r0, r1DD Fourier@faceDDD;
tt = RotateLeft@tt, 8hsize, hsize<D;
GraphicsRow@8ArrayPlot@filter@r0, r1DD, ArrayPlot@ttD<D,
88r0, 0<, 0, r1<, 88r1, hsize<, 0, 100<D

Out[21]=

r0

r1

Multiple spatial frequency channels
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Multiple spatial frequency channels
Global vs. local: 

Sinusoidal basis functions are global filters

Psychophysical experiments.  

->Multi-resolution, but local filters

->A model of the spatial filtering properties of neurons in the primary visual cortex

Multiresolution analysis with local filters
Instead of sinusoidal basis functions, we can filter with localized "gabor function" filters:

In[27]:= Grating[x_,y_,fx_,fy_,phase_] := Cos[(2.0 Pi (fx x + fy y) + phase)];
GratingPatch[x_,y_,fx_,fy_,sig_,phase_] := Exp[-((x)^2 + (y)^2)/(2*sig^2)]*Grating[x,y,fx,fy,phase];
kern[fx_, fy_, sig_,phase_] := 
  Table[GratingPatch[x, y, fx, fy, sig,phase], {x, -1, 1, .1}, {y, -1, 1, .1}];
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In[31]:= Manipulate@
GraphicsRow@8

ArrayPlot@kern@fr * Cos@thetaD, fr * Sin@thetaD, sig, phaseDD,
ArrayPlot@ListConvolve@kern@fr * Cos@thetaD, fr * Sin@thetaD,

sig, phaseD, faceDD<D, 88fr, 1, "radial frequency"<, .1, 2<,
88theta, .4, "orientation"<, 0, Pi<,
88sig, .4, "envelope width"<, .001, 1<, 88phase, 0, "phase"<, .0, Pi ê 2<D

Out[31]=

radial frequency

orientation

envelope width

phase

Self-similarity
But another restriction is that the filters could all be the same shape, but just scaled versions of each other. 

The self - similar idea is important to vision because of the need for some kind of scale - invariance. Further, the self - 
similar aspect of these neural models bore a close resemblance to the emerging mathematical field of wavelet analysis. 
The emphases are different-- over - completeness may be important and vision does the projections in parallel (the serial 
algorithmic component of wavelet computation is integral to the mathematical interest).

‡ Human efficiency for detecting gabor patches

4 10.ImageProcessing.nb



‡

Human efficiency for detecting gabor patches

Burgess, Wagner, Jennings and Barlow (1981) combined the SKE observer and spatial frequency analysis of human vision 
to find out how efficiently humans detected patterns. They showed in a 1981 Science article that narrowly windowed 
sinusoids were detected with high efficiency (>70%) when added to static visual noise. Further, these targets were detected 
more efficiently than disks of light.

You basically have all the tools to replicate the experiment of Burgess et al. You can compute d' for the ideal observer for 
signal-known-exactly patterns. And you can generate Gaussian-windowed sinusoids and add them to gaussian white noise. 
If you measure the percent correct, and convert that to d' for the human observer, you can calculate the absolute efficiency 
for human detection--and contribute to answer the question of what the eye sees best.

Watson, Barlow & Robson (1983) found that that a 7 c/deg grating drifting at 4 Hz, (with a narrow gaussian envelope in 
space and time) was detected more efficiently than other patterns. Further, the quantum efficiency was very low (<0.05%).

Kersten (1984) measured efficiency for 1-d gratings (i.e. vertical) in temporal (1-d spatial) visual noise for various spatial 
frequencies and widths. 

Peak efficiency was found for patterns of about the same shape, regardless of spatial frequency. The cross-sectional 
profiles for high efficiency patterns corresponded to the diagonals in the above graph and looked like:

Psychophysical measurements across spatial scale haven't been made systematically yet for various vertical sizes. One 
prediction would be that images of the following type would be efficiently detected in noise:
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Psychophysical measurements across spatial scale haven't been made systematically yet for various vertical sizes. One 
prediction would be that images of the following type would be efficiently detected in noise:

When the filters have the same shape except for a change of scale (xØax), they are called self-similar.

‡ Bottom-line: image coding in terms of scale and orientation:

A model for human spatial image representation

At each spatial location, project the image onto a collection of basis vectors (i.e. compute the dot product) that span a 
range of spatial scales and orientations:

In general, these neural models of basis functions may be over-complete, and non-orthogonal. And there may be a range of 
phases. Above we show only the "sine-phase" or "edge-detectors" of Hubel and Wiesel.
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Neural image? Or neural image representation?
We can view the response activities of a family of receptive fields of neurons as representing a filtered neural image of the 
input image. Although useful, this view can be misleading when we start to think about function, for "who is looking at the 
image"? 

Alternatively, thinking in terms of basis functions gives us another perspective. We can view the response activities of a 
family of receptive fields as a representation of the input image. If linear, an activity is the result of a projection of an 
image on to a basis function (receptive field weights). Given such a representation we can begin to ask questions like:

1. Is the neural basis set complete? Can any image be represented? 

2. Are image representations unique? Is any information lost? I.e. we do the inverse transformation, can the original input 
be reconstructed?

Or are there "equivalent classes" of images--i.e. ones that all produce the same neural representation? Consider for exam-
ple, a single-channel model with lateral inhibitory center-surround spatial filters--what is an equivalence class?

3. Maybe the neural basis set is "over-complete"?

4. Are the neural basis functions orthogonal? Are they normal?

What is a multiresolution scale/orientation representation good for?
What is the computational significance of a wavelet-like decomposition?

Efficient coding?

-> savings in neurons, or metabolic requirements?

-> representations for efficient learning?

-> analysis of natural image statistics

Analysis of what vision needs to recognize objects, etc..

-> Edge detection?

-> Edge detection at different spatial scales. Combining over spatial scale

Today

‡ Upcoming dates:

Mid-term: Oct. 20th. Study-guide available by Wednesday this week.

3rd Assignment due Oct. 29th. Will involve variations on exercises in this and the next two notebooks.

Final project outlines due: Nov. 12th.

‡ Final projects

10.ImageProcessing.nb 7



‡

Final projects

‡ Image manipulations

Final projects

Format
Should be written like a scientific paper. 

Might require most of the code to be put in appendices. 

Can use modules you find elsewhere, but preserve copyrights, and reference

Will post final notebooks on the class web site.

Your "audience" will be your class peers.

Possible types of projects

Programming perceptual demonstrations

‡ Motion illusions

e.g. stereograms, autostereograms, lightness illusions

with interactive parameter variation

http://viperlib.york.ac.uk/

‡ Geometrical morphs to illustrate adaptation, perceptual hysteresis

‡ Instructional demonstrations

E. g. Cortical magnification: use function interpolation to illustrate how the retintopic map maps the visual field onto 
primary visual cortex.
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Programming visual psychophysics (quantitative measurements)

‡ What does the eye see best?

‡ Data analysis/report of data collected elsewhere (by you)

OK to complement other projects, but need to clarify how the work load is divided up.

Classification images
See: http://www.journalofvision.org/2/1/introduction.html

See: Olman and Kersten (2004)

Importance of the phase spectrum in visual recognition
See, Glass patterns, Barlow and Olshausen

Visual adaptation
See for example, Webster, M. A., Georgeson, M. A., & Webster, S. M. (2002). Neural adjustments to 
image blur. Nat Neurosci, 5(9), 839-840.

Computational models

‡ Machine vision: but should have  discussion/comparison of relevance to human vision.

‡ Orthogonal wavelet decomposition in Mathematica

See: http://www.cns.nyu.edu/~eero/software.html for Matlab versions
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‡ Neural network models

e.g. adaptive receptive field development, visual attention,...

‡ Models of human/biological vision

‡ Bayesian edge detection

‡ Geometrical morphs to register images to compute shape means, and other statistics

‡ Statistical analyses of images

Apply signal detection theory to analyzing how well an edge detector performs relative to ground truth.

e.g. Bayesian edge detector, correlational analyses, ...

Image processing: Simple point manipulations

Point operations

‡ Various contrast definitions

(Imax - Imin)/(Imax + Imin): Called "Michelsen contrast". Particularly appropriate for gratings, or stimuli with primary 
peak and trough.

DI/Ibackground: Used in psychophysics of small points/disks against a background.

DI/Imean: Used in psychophysics for simple stimuli. Gives same number as Michelsen for gratings.

c(x,y) = (IHx, yL - ImeanL/Imean: contrast at a point (x,y). Could be as function of time too, c(x,y,t).

⁄x,y HIHx, yL - ImeanL2 /Imean: r.m.s. contrast, a good summary measure for complex image. "contrast power", ⁄x,yc2(x,y), 

is the square of r.m.s. contrast. "Contrast energy" is power x area x duration. In psychophysics, area is measured in 
degrees of visual angle. 

One needs to decide the region over which to calculate the mean. The default is the whole image.

‡ Contrast manipulations

Adjusting contrast (gain=1 leaves image unchanged, gain=0 reduces it to a uniform field):
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In[32]:= m = Mean@Flatten@faceDD; gain = 0.045;
Manipulate@
ArrayPlot@gain Hface - mL + m, Mesh Ø False, Frame Ø False,
PlotRange Ø 8Min@faceD, Max@faceD<D,

88gain, 0.045<, 0, 1<D

Out[33]=

gain

‡ Psychophysics and contrast

When measuring human sensitivity, it is important to carefully measure and calibrate the image stimuli. Because standard 
computer displays can at best resolve 256 graylevels, it is useful to convert the stimuli into a range going from 0 to 255. 

Scale so values are represented as graylevels between 0 and 255:

In[34]:= a = 255 ê HMax@faceD - Min@faceDL;
b = -a Min@faceD;

In[36]:= face256 = a face + b;
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Exercise: Normalize face so that it has a mean level of zero, and an r.m.s. contrast of 1. Use ListPlot and 
Flatten[] to show a scatter plot of the values before and after the scaling.

Exercise: Given that human contrast sensitivity for a sinewave grating can be as high as 500, could you 
get a good measure of it using a typical computer graphics screen?

Exercise: Produce a negative image by reversing the contrast

‡ Gamma correction

Computer operating systems allow one to adjust for various non-linearities between displays. A typical CRT has a non-
linear relationship between measured screen intensity and the voltage supplied. A fairly standard way of summarizing the 
non-linear relationship is in terms of "gamma": intensity = a x voltage^gamma. Let's assume that we are using intensity 
units that range from 0 to 255 and voltage units also going from 0 to 255.  intensity = 255^(1-gamma) x voltage^gamma:

In[41]:= output@input_, gamma_D := 2551-gamma inputgamma;

Plot@output@x, 2D, 8x, 0, 255<, Frame Ø True, ImageSize Ø SmallD

Out[42]=
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In[43]:= output2@input_D := 127. SinBinput
8

F + 127; ;

Plot@output2@xD, 8x, 0, 255<, Frame Ø True, ImageSize Ø SmallD

Out[44]=
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You can do a many-to-one mapping:
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You can do a many-to-one mapping:

ArrayPlot@output2@face256D, PlotRange Ø 80, 255<D

Does the fact that you can still see a recognizable form in the above picture tell you anything about human vision?

The computer's display card has a look-up-table (LUT) that can be loaded with the inverse gamma function to linearize the 
display.

Solve@output == 255^H1 - gammaL input^gamma, inputD

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. à

::input Ø I255gamma-1 outputM
1

gamma >>

In[50]:= inverse@output_, gamma_D := I255-1+gamma outputM1êgamma;
Plot@inverse@x, 2D, 8x, 0, 255<, Frame Ø True, ImageSize Ø SmallD

Out[51]=
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‡ Using gamma to do  point operations

You can also use the gamma transformation to do non-linear point operations on an image:
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In[54]:= Manipulate@
GraphicsRow@

8Plot@output@x, gammaD, 8x, 0, 255<, Frame Ø True, ImageSize Ø Small,
PlotRange Ø 80, 255<D, ArrayPlot@output@face256, gammaD,
PlotRange Ø 80, 255<D<D,

8gamma, 0.1, 4<D

Out[54]=

gamma
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‡ Sigmoidal contrast manipulation

Here is a gain function (called the "logistic function") that manipulates contrast smoothly--a "soft" threshold:

In[55]:= squash@x_, m_, g_D := NB 1

1 + ‰-g Hx-mL F;

Plot@squash@x, 128, 1D, 8x, 0, 255<, Frame Ø True, ImageSize Ø SmallD
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In[60]:= gain = 0.045`; m0 = Mean@Flatten@face256DD;
Manipulate@
GraphicsRow@
8Plot@squash@x, m, gD, 8x, 0, 255<, Frame Ø True,
PlotRange Ø 880, 255<, 80, 1<<D,
ArrayPlot@squash@Hface256 - m0L + m0, m, gD,
PlotRange Ø 8Min@faceD, Max@faceD<D<D, 88m, 128<, 0, 255<,

88g, .5<, 0, 1<D

Out[61]=

m

g

As g grows, the sigmoid approaches a hard-threshold. Images that are forced to have only two values are called "Mooney 
images". 

We can make Mooney images more directly using  a function that takes an image and sets pixels bigger than  t to 255, and 
if less than (or equal to) t,  to 0:

Mooney@image_, t_D := Map@If@Ò > t, 255, 0D &, image, 82<D;

(See Moore and Engel, 2001, for an application to studying brain responses to objects).
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Exercise: Write a function that quantizes an image to a set of gray levels specified by a set of thresholds: 
t1, t2, t3, ...,tN-1. Set N=3. (Try using Which[]).

Simple statistics
First-order, i.e. don't take into account relations between pixels

‡ Mean, variance, r.m.s. contrast

In[62]:= m = Mean@Flatten@faceDD;
s = Sqrt@Variance@Flatten@faceDDD;

r.m.s. contrast can be calculated as:

In[64]:= Sqrt@Variance@Flatten@faceDDD ê Mean@Flatten@faceDD

Out[64]= 0.600059

‡ Histograms

In[65]:= Histogram@Flatten@faceDD

Out[65]=

0.2 0.4 0.6 0.8

100

200

300

400

500

600

700

You can tell that the image is quantized at a coarse level (less than 4 bits).

Alternatively, you could calculate the histogram with built-in functions. To do the pattern match below, the floating point 
numbers are first converted to integers using Round[]:
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You can tell that the image is quantized at a coarse level (less than 4 bits).

Alternatively, you could calculate the histogram with built-in functions. To do the pattern match below, the floating point 
numbers are first converted to integers using Round[]:

In[69]:= domain = Range@0, 255D;
Freq = Map@Count@Round@Flatten@face256DD, ÒD &, domainD;

If we normalize the histogram so that the sum is one, then we have a probability:

In[71]:= ListPlotB Freq

Plus üü Freq
, PlotStyle Ø PointSize@0.02DF

Out[71]=
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Getting regions of images

ArrayPlot@Take@face256, 81, 32<, 81, 64<DD

Or with Mathematica 6.0, you can use:
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ArrayPlot@face256@@1 ;; 32, 1 ;; 64DDD

‡ Getting coordinates

ArrayPlot@face256, PixelConstrained Ø 81, 1<D

Double-click on the image above to bring up the 2D Drawing tools. Now use the Get Coordinates tool to select the 
{x0,y0}, and {x1,y1} as the corners of the rectangular patch that you want. Do Save, and then do Paste in a cell below. 
Here are coordinates for diagonal points for the eyes. 

889, 36<, 853, 51<<
Reverse@Transpose@%DD
ArrayPlot@Take@face256, %@@1DD, %@@2DDDD

9 36
53 51

36 51
9 53
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ArrayPlot@face256@@36 ;; 51, 9 ;; 53DDD

Geometric image manipulations using function interpolation
Compare the plots with InterpolationOrder Ø 0 and InterpolationOrder Ø 1.

faceFunction = ListInterpolation@Transpose@faceD, 88-1, 1<, 8-1, 1<<,
InterpolationOrder Ø 0D;

DensityPlot@faceFunction@x, yD, 8x, -1, 1<, 8y, -1, 1<, PlotPoints Ø 256,
Mesh Ø False, AspectRatio Ø Automatic, Frame Ø None,
ColorFunction Ø "GrayTones"D

Morphing

faceFunction = ListInterpolation@Transpose@faceD, 88-1, 1<, 8-1, 1<<D;
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DensityPlotAfaceFunctionASign@xD x2, Sign@yD y2E, 8x, -1, 1<,
8y, -1, 1<, PlotPoints Ø 100, Mesh Ø False, AspectRatio Ø Automatic,
Frame Ø None, ColorFunction Ø "GrayTones"E

More filtering: Calculating the spatial gradient of an image using 
function interpolation

The gradient of an image intensity function f, “f, has a maximum value in the direction of greatest change.

(1)» “f » =
∂f

∂x
,

∂f

∂y
=

∂f

∂x

2

,
∂f

∂y

2

Let filterface =f, where we've blurred out face a little to reduce quantization artifacts:
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In[99]:= kernel = 881, 1, 1<, 81, 1, 1<, 81, 1, 1<<;
filterface = ListConvolve@kernel, faceD;

In[101]:= faceFunction = ListInterpolation@Transpose@filterfaceD,
88-1, 1<, 8-1, 1<<D;

In[102]:= nx@x_, y_D := Evaluate@D@faceFunction@x, yD, xDD;
ny@x_, y_D := Evaluate@D@faceFunction@x, yD, yDD;

ImageGradient@x_, y_D :=

Evaluate@Sqrt@D@nx@x, yD, xD^2 + D@ny@x, yD, yD^2D D;

Plot the rate of change in the x-direction:

In[105]:= temp = Table@nx@x, yD, 8x, -1, 1, .005<, 8y, -1, 1, .005<D;
ArrayPlot@Transpose@tempDD

Out[106]=

Plot the magnitude of the gradient to highlight regions of the image where contrast is changing the most rapidly:
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In[107]:= DensityPlot@ImageGradient@x, yD, 8x, -1, 1<, 8y, -1, 1<,
PlotPoints Ø width, Mesh Ø False, Frame Ø False, ColorFunction Ø "Rainbow"D

Out[107]=
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Manipulating color images

image = ExampleData@8"TestImage", "Mandrill"<D

RGBvalues = image@@1, 1DD;
Dimensions@RGBvaluesD

reds = Map@Ò@@1DD &, N@RGBvaluesD, 82<D;
greens = Map@Ò@@2DD &, N@RGBvaluesD, 82<D;
blues = Map@Ò@@3DD &, N@RGBvaluesD, 82<D;
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GraphicsRow@8ArrayPlot@redsD, ArrayPlot@greensD, ArrayPlot@bluesD<D

‡ A weighted average of RGB values to produce a luminance image:

grayscale = MapB0.3 Ò@@1DD + 0.59 Ò@@2DD + 0.11 Ò@@3DD
255

&, N@RGBvaluesD, 82<F;
ArrayPlot@grayscaleD

Note the weights above are arbitrary, and the chosen values will depend on the color calibration.

‡ Putting the R, G, B images back together:

r = reds;
g = greens;
b = blues;
temp2 = Partition@Transpose@8Flatten@rD, Flatten@gD, Flatten@bD<D,

Dimensions@rD@@2DDD;
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Graphics@Raster@temp2 ê 255., ColorFunction Ø RGBColorDD

Next time
Efficient coding

Science writing
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