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Lecture 9: Neural spatial filtering

‡ Initialize:

Off@General::spell1D;

Outline

Last time: Key ideas

1. The output or response of a linear system can be modeled as a matrix operation. If the system is shift-invariant, the matrix 
has the form of a convolution.

2. Some representations of images are better than others depending on the job of the model:

Spatial frequency representation of images good for modeling optical transformation. 

E.g. Eigenfunctions of the system: Avoids convolution--one can project the image onto the appropriate basis 
set providing the spectrum. Then scale each eigenvector by the product of spectrum with the MTF (i.e. eigenvalues of the 
system), and then add them all up.



This time

Linear systems models of neural processing

Single-channel spatial filtering

Multiple channel filters

Psychophysical experiments.  

->Multi-resolution, and wavelet bases

->A model of the spatial filtering properties of neurons in the primary visual cortex

Understanding the material in this lecture will provide a basis for understanding current research in:

The search for the neural basis of image feature extraction for image representation and recognition

Computer vision models for edge detection, texture processing, ...

Models of human image discrimination performance, image quality metrics, ...

Tutorials

‡ Mathematica tutorial on convolutions

‡ Mathematica tutorial on fourier analysis of images

Single channel spatial frequency filtering

 Mach bands & perception

Ernst Mach was a 19th century physicist and philosoper known today for a unit of speed and for "Mach's principle", Mach 
was also interested in sensory physiology and today is also known for several visual illusions. One illusion is called "Mach 
bands".  He noticed that the  brightness of a luminance ramp didn’t look like one would predict simply from physical 
measurements of light intensity. Let's make some Mach bands. 
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size = 120;
Clear[y];
low = 0.2; hi = 0.8;
y[x_] := low /; x<40
y[x_] :=

((hi-low)/(size/3)) x + (low-(hi-low)) /; x>=40 && x<80
y[x_] := hi /; x>=80

machg=Plot[y[x],{x,0,120},PlotRange->{{0,120},{0,1}},PlotStyleØ
{Hue[0.9]}];
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We'll now make a 2D gray-level picture with ListDensityPlot to experience the Mach bands for ourselves. PlotRange 
allows us to scale the brightness.

picture = Table[Table[y[i],{i,1,size}],{i,1,size/2}];
ListDensityPlot[picture,Frame->False,Mesh->False,  

PlotRange->{0,1}, AspectRatio->Automatic];

There...what took Mach some effort to set up carefully only requires a computer, some general purpose software, and a few 
lines of code.

What Mach noticed was that the left knee of the ramp looked too dark, and the right knee looked too bright. Objective light 
intensity did not predict apparent brightness.The red line below is proportional to the actual intensity. The blue line shows 
an informal sketch of apparent brightness.Why is this? Mach advanced an explanation in terms of lateral inhibition, an 
explanation that hasn’t changed much in over 100 years. We’ll return to it below. But first let’s take a look at what is known 
about retinal anatomy and physiology.
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‡ Mach's explanation

Physiological basis for spatial filtering

The neural basis? Lateral inhibitory filtering in sensory cells may be part of the answer. Found in vertebrates and invert-
abrates: 

Limulus (horseshoe crab)--Hartline, who won the 1967 Nobel prize for this work that began in the 30's;

vertebrates: Frog - Barlow, and mammals: Cat --Kuffler. Below is a schematic representation of the mammalian retina.
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The receptors are connected to horizontal and  bipolar cells which in  turn are connected to amacrine cells. One overall 
function of this circuitry is to provide gain control for intensity signals, with high-pass spatial and temporal  filtering, so that 
the retinal output signals light levels relative to an average level,  rather than signalling absolute level.The function of the 
retina may best be seen by a close examination  of what its output cells are doing. These cells are called ganglion cells and  
they send their axons out of the eye through the optic disk ("blind spot") to  the lateral geniculate nucleus (LGN). The LGN 
has been crudely (and perhaps  erroneously) likened to a relay station en route to cortex. Several types of  ganglion cells, 
each with distinctive anatomy and function have been  identified in cat and monkey (Enroth-Cugell and Robson, 1966; see 
Shapley and Perry, 1986 for a comparison with monkey ganglion cells). In cat, the two  principle types are the X, Y cells. 
They code contrast into trains of action  potentials (spikes) whose temporal frequency grows with  contrast. In addition, 
these cells act as approximately circularly symmetric  spatial-temporal band-pass filters, with small departures  from 
linearity. What this means should become clear after we explain the idea of a receptive field. 

If one measures the response of a ganglion cell to a uniformly illuminated screen, one typically finds a mean spike 
discharge rate (e.g. 50 spikes/sec). Then if a small light spot is positioned on the screen, the cell will increase its firing for 
some positions, and decrease its firing rate for other positions. A "receptive field" can be mapped out which shows the 
sensitivity of the cell to the light spots in various locations.  One of the striking findings of the 1950's was the discovery that 
retinal cells almost uniformly show a concentric center-surround organization in which the center is excitatory and the 
surround inhibitory (or vice versa). The figure below shows a density plot where light areas represent where the cell 
increases firing to a spot, and the darker areas where it is inhibited
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Three forms for the "mexican-hat" filter: w(x,y)

‡ Difference-of-Gaussians (DOG)

DOG@x_, y_, s1_, s2_D := 2 Exp@H-x^2 - y^2L ê s1^2D - Exp@H-x^2 - y^2L ê s2^2D;

Plot[DOG[x,0,1,2],{x,-4,4}];
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DensityPlot@DOG@x, y, 1, 2D, 8x, -4, 4<, 8y, -4, 4<, Mesh Ø False,
PlotPoints Ø 64, PlotRange Ø 8-1, 1<D;
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‡ Radial Cosine gabor function

cgabor@x_, y_, fx_D := Exp@H-x^2 - y^2LD Cos@2 Pi Hfx Sqrt@Hx^2 + y^2LDLD;
DensityPlot@cgabor@x, y, .25D, 8x, -4, 4<, 8y, -4, 4<, Mesh Ø False,
PlotPoints Ø 64, PlotRange Ø 8-.25, .25<D;
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‡ —2G

blur@x_, y_D := Exp@-x^2 - y^2D;
dx@x_, y_D := D@blur@u, vD, uD ê. u Ø x ê. v Ø y
dy@x_, y_D := D@blur@u, vD, vD ê. u Ø x ê. v Ø y
delsqG@x_, y_D := D@blur@u, vD, 8v, 2<D + D@blur@u, vD, 8u, 2<D ê. u Ø x ê.
v Ø y

DensityPlot@-delsqG@x, yD, 8x, -4, 4<, 8y, -4, 4<, Mesh Ø False,
PlotPoints Ø 64, PlotRange Ø 8-2, 2<D;
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Spatial filtering

If one thinks of the retina (or more precisely a small patch) as a having a whole array of identical linear ganglion cells, one 
could also interpret the receptive field as the analog of the point spread function of the optics. So now the above figure 
would represent the strength of the response of the array of ganglion cells at each location to a small spot of light.

This concentric antagonistic spatial  organization is called lateral inhibition. There are both ON-center and OFF- 
center types of ganglion cells.  How can we quantitatively model the ganglion cell response? Let rk,l  be the response (in 
spikes/sec) of a ganglion cell at x-y location (k,l). The average response, to a first approximation, is determined by the 
weighted sum of the input light intensities, gi, j  at spatial location (i,j)
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rk,l=⁄i, j wk,l; i, j  gi, j

As with the PSF, we assume spatial homogeneity, and thus shift-invariance:

rk,l=⁄i, j wk-i; l- j  gi, j . Or by suitable arrangement of rows and columns as matrix operation, r = W.g

In the continuous form, the neural response is modeled by the convolution integral:

r(x,y) = w*g = Ÿ Ÿ wHx - x ', y - y 'L gHx ', yL „ x ' „ y '
Neural signals often show small-signal suppression, and high-signal saturation. We can describe this as a simple point-wise 
non-linearity, s(), where s is a sigmoid function (a function with an elongated "S" shape.).

As we have seen earlier, one can describe a linear system either in the spatial or spatial frequency domain. Thinking in 
frequency terms, a center-surround filter (as in the above figure) can also be interpreted as a band-pass filter, which sup-
presses low and high spatial frequencies, but leaves middle ones less affected. 

One way to see this is to note that the amplitude spectrum of the Fourier transform of a DOG shaped filter has the shape of 
an inverted U -- that is, the contrast amplitudes of low and high spatial frequencies are attenuated relative to the middle 
frequencies. The optimal frequency, in fact, would have a periodicity close to that of the receptive field. If one uses the 
simple linear model, then the integral of the receptive field has to be zero (the positive and negative weights should balance 
each other out); otherwise, the filter will generate a "d.c." offset that is proportional to the mean light level. Recall that one 
of the striking properties of X and Y cat ganglion cells is that they  show no sensitivity to absolute light level.

‡ So what about Mach bands?

We've seen Mach's qualitative explanation. In Mathematica, it is straightforward to convolve a DOG shaped filter with 
Mach’s luminance ramp to predict a response.
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LDOG = 0.25 Table@DOG@x, 0, 1 ê 1.9, 2 ê 2D, 8x, -4, 4, .25<D;
ListPlot@LDOG , PlotJoined Ø True, PlotRange Ø 8-.5, .5<D;
r = ListConvolve@LDOG, picture@@1DD, 817, -17<D;
Show@machg, ListPlot@r ê .1, PlotJoined Ø True,

PlotRange Ø 880, 120<, 80, 1<<, DisplayFunction Ø Identity,
PlotStyle Ø 8Hue@0.6D<DD;
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Note that we've scaled the output for comparison. Also, note that we have more positive than negative summed weights in 
the DOG filter. What would the response look like if we used a more realistic model of retinal center-surround cells, i.e. 
with no "d.c." response?

Exercise: What happens (to perception and to the model) when the slope of the ramp increases, approach-
ing that of a step function?

‡ And what about the shape of the Contrast Sensitivity Function (CSF)?

Can we use the center-surround, mexican-hat, spatial filter to describe the form of your own contrast sensitivity function? 
(CSF.gif)

In the previous lecture we showed that the fall-off in sensitivity at high spatial frequencies could be due in part to optical 
losses. But there is also a fall-off at the low end. The peak is between 3 and 5 cycles/degree. 

Contrast sensitivity as a function of spatial frequency has an inverted U-shape:
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The visual system responds well to contrasts over a middle range, but not as well to low or high spatial frequencies. The 
visual system is sometimes said to behave as a bandpass spatial filter. because it lets frequencies in a middle range of 
spatial frequencies pass through better than low or high frequencies. 

A center-surround spatial filter can be used to model both the low and high frequency fall-offs. One theory (the "single-chan-
nel") theory can account for this if the size and spacings of the excitatory and inhibitory regions of the receptive field 
weighting function,
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are well-matched to a middle frequency. Although the single-channel theory works here, it doesn't account for other results 
that we will get to later.  One theory that we now turn to is that human CSF is probably determined by the envelope of the 
contrast sensitivities of a family of cell types in primary visual cortex of the brain. 
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Multiple channel spatial filtering

Campbell and Robson -- 1968

‡ Contrast sensitivity for a cosine grating and for a square wave grating

Given a cosine grating and a square-wave grating of equal physical contrasts, which one is more detectable near threshold? 
Or would contrast sensitivity be the same? You could try lowering the lowcontrast variable until you can just barely see the 
square wave grating, but most displays have no more than 8 bits of graylevel resolution, so your sinewave and squarewave 
gratings may not be that different after quantization!

lowcontrast = 0.0125; mediumcontrast = 0.125;
contrast = mediumcontrast;
Grating@x_, y_, fx_, fy_D := Sin@2 Pi Hfx x + fy yLD;
Square@x_, y_, fx_, fy_D := Sign@Grating@x, y, fx, fyDD;

gsine = DensityPlot@contrast * Grating@x, y, 3, 0D, 8x, -1, 1<,
8y, -1, 1<, PlotPoints Ø 64, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, DisplayFunction Ø IdentityD;

gsquare = DensityPlot@contrast * Square@x, y, 3, 0D, 8x, -1, 1<,
8y, -1, 1<, PlotPoints Ø 64, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, DisplayFunction Ø IdentityD;

Show@GraphicsArray@8gsine, gsquare<D, DisplayFunction Ø $DisplayFunction D;
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‡ Answer: Human contrast sensitivity is higher for a square than for a sine wave. 

Campbell and Robson measured the CSF for sinusoidal and square-wave gratings. They showed that to be seen equally well 
(at threshold), one needed about 27% more contrast for a sine wave than for a square wave. (This was for spatial frequencies 
higher than the peak frequency of the CSF). Or, putting it another way--if they are both at the same physical contrast, when 
a square-wave can just be seen, the sine-wave is quite invisible. Why?

‡ Fourier series for a square-wave grating

Here is a plot of the relative intensity as a function of distance across the screen for the sine and square-wave gratings:

square1@x_D := Sign@Sin@xDD;
Plot@8Sin@xD, square1@xD<, 8x, 0, 7<D;
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Fourier showed that (almost) any periodic function could be synthesized from a sum of sine and cosine waves.  The fourier 

series for a square-wave is: ⁄n=0
¶ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 n+1  sin@H2 n + 1L xD. The first term in the series (n=0) is sin(x) and is 

called the fundamental component of the series. Let's plot up the sum of the first 13 terms together with a plot of the 
fundamental:

approxsquare@x_D := Sin@xD + H1 ê 3L Sin@3 xD + H1 ê 5L Sin@5 xD +
H1 ê 7L Sin@7 xD + H1 ê 9L Sin@9 xD + H1 ê 11L Sin@11 xD + H1 ê 13L Sin@13 xD +
H1 ê 15L Sin@15 xD + H1 ê 17L Sin@17 xD + H1 ê 19L Sin@19 xD + H1 ê 21L Sin@21 xD +
H1 ê 23L Sin@23 xD

Plot@8Sin@xD, approxsquare@xD<, 8x, 0, 7<D;
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In fact, Fourier analysis tells us that the contrast amplitude of the fundamental is p/4 (=1.27) greater than that of the 
square-wave:
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realsquare@x_D := HPi ê 4L Sign@Sin@xDD;
Plot@8Sin@xD, realsquare@xD<, 8x, 0, 7<D;
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What does the psychophysics mean for neurophysiology?

Campbell and Robson's conclusion was that the human visual system was analyzing the square-wave grating in terms of its 
spatial frequency components. Campbell and Robson were a bit more conservative than this, but at the time many found it 
irresistable to make the grand conjecture that: The visual cortex represents complex images in terms of their projections 
onto the set of sinusoidal grating basis functions 

 I.e. dot products with {cos[2 p ( fx  x + fy  y) + f]}, or using complex variable notation, with members of the set 
{ei2pH fx  x+ fy  yL}. (Recall that these are eigenfunctions of a linear shift-invariant system). 

What does this mean in terms of neurons? One interpretation would be that there are neurons in the visual cortex 
whose receptive field weights match those of sinusoidal gratings, and whose activities represent the magnitude of the 
projections. So rather than a circularly symmetric center-surround receptive field (as for the ganglion cell), the receptive 
field weights (for a range of cells of one orientation) would look like one of these:

grating@x_, y_, fx_, fy_, f_D := Sin@2 Pi Hfx x + fy yL + fD;
fx = 1 ê 1; fy = 1 ê 3; f1 = 0;
DensityPlot@grating@x, y, fx, fy, f1D, 8x, -2, 2<, 8y, -2, 2<,
PlotPoints Ø 64, Mesh Ø False, Frame Ø False, PlotRange Ø 8-1, 1<D;

where various combinations of { fx , fy ,f} produce gratings of any spatial frequency, orientation, and phase. Try some 
variations on the above.
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Exercise: What is orientation q as a function of fx  and fy?

These would be the weights for a collection of cells at just one location. What image pattern would produce the biggest 
response? Assuming that the patterns are all normalized, the pattern that matches the receptive field weight would give the 
biggest response.

You might argue that this is a pretty big stretch from a simple psychophysical result. You'd be right. What are the neurophysi-
ological data?

The neurophysiology of neurons in the striate cortex: Hubel & Wiesel

Hubel & Wiesel (1968) characterized the receptive fields of neurons in the mammalian visual cortex in terms of several 
different classes. Some cell types behaved like "bar detectors", and others like "edge detectors". Their sensitivities are 
illustrated in the figures below.

‡ "Bar detector" receptive field
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‡ "Edge detector" receptive field
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‡ Conclusion-"global" fourier representation of images NOT consistent with neurophysiology

Multiresolution
As an image strikes the retina, light energy is converted by each receptor to an electrical signal. The discrete nature of 
retinal sampling suggests a pixel-like representation of the image. The retina further processes the incoming image signal, 
and the "neural image" as represented by ganglion cell outputs is bandpass filtered.

Measurements of the responses of single neurons in the primary visual cortex also behave as spatial filters; but they are 
systematically selective for both spatial frequency and orientation, and like ganglion cells, their receptive fields have a 
limited spatial extent.

"Gabor filters": Localization in frequency vs. localization in space

‡ Fourier transform

Often it is more convenient to work with the general continuous Fourier case (rather than the discrete). Then, we need to use 
complex numbers to represent the sinusoidal gratings, their amplitudes and phases. Complex numbers can be written in 
polar notation where the complex number has a length r = Abs[z] and an angle θ =  Arg[z] that it makes with the real axis: 

z = r (cos θ + i sin θ ). 

Using Euler's formula,  e iθ   = cos θ + i sin θ,

 we can put the length and angles back together:

  z = Abs[z] Exp[I Arg[z]], (where i=I).

Given a function f(x), the fourier transform is given by:

Fourier transform : F HwL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 ‡

-¶

¶

f HxL eiwx  „x ,

where F HwL is in general a complex number. Arg@ F HwLD gives the phase spectrum,
which specifies how the gratings should be offset relative to each other,
and Abs@F HwLD gives the amplitude spectrum, which specifies the amplitude of each grating.

Inverse fourier transform : f HxL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 ‡

-¶

¶

F HwL e-iwx  „w
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‡ Localization in space: Fourier transform of a delta function is constant

The Dirac delta function is precisely localized in space,

FourierTransform@DiracDelta@xD, x, wD

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

but is a constant, 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 , spread out over the whole frequency spectrum.

‡ Localization in frequency: What is the Fourier transform of Cos[w 0x]? (w  = 2 p f)

Cosine is spread out in space,

FourierTransform@Cos@w0  xD, x, wD

$%%%%%%p
ÅÅÅÅÅÅ
2

dHw - 4L + $%%%%%%p
ÅÅÅÅÅÅ
2

dHw + 4L

but is precisely located in frequency.

‡ Is there some compromise?

The "Gabor functions": 

{Exp@-Hx ê sL^2D Cos@w0 xD, Exp@-Hx ê sL^2D Sin@w0 xD} are said to be "well-localized" in both space 
and time. 

Heisenberg had shown the uncertainty principle--simultaneous exact localization in space and momentum was not possible. 
Dennis Gabor showed that of all basis functions, "Gabor functions" achieved an optimal compromise (according to criteria 
he specified) in achieving simultaneous compaction in both frequency and space (or time).

Plot a gabor function:
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s = 1; w 0 = 4;
Plot@Exp@-Hx ê sL^2D Cos@w0 xD, 8x, -4, 4<, PlotRange Ø 8-1, 1<,
AxesLabel Ø 8"x", "Contrast"<D;
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Plot the frequency spectrum of a gabor function:

Clear@s, w, w 0D;
FourierTransform@Exp@-Hx ê sL^2D Cos@w0 xD, x, wD

‰- 1ÅÅÅÅ4 s2 Hw+w0 L2 I1 + ‰s2 w w0 M "########1ÅÅÅÅÅÅ
s2

s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 è!!!2
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s = 1; w 0 = 4;

PlotA
‰- 1ÅÅÅÅ4 s2 Hw+w0L2 I1 + ‰s2 w w0 M "########1ÅÅÅÅÅÅ

s2
s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!
2

, 8w, -8, 8<,

PlotRange Ø 88-8, 8<, 80, .5<<, AxesLabel Ø 8"w", "Amplitude"<E;
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The spectrum is a pair of "blurred out" delta functions, i.e. not as precisely localized in frequency as a pure sinusoid, but 
nevertheless a gabor function's spectrum is focused around a particular frequency.

Psychophysical clues to human spatial image representations: 
What does the eye see best?

‡ Human efficiency for detecting gabor patches

Burgess, Wagner, Jennings and Barlow (1981) combined the SKE observer and spatial frequency analysis of human vision 
to find out how efficiently humans detected patterns. They showed in a 1981 Science article that narrowly windowed 
sinusoids were detected with high efficiency (>70%) when added to static visual noise. Further, these targets were detected 
more efficiently than disks of light.

You basically have all the tools to replicate the experiment of Burgess et al. You can compute d' for the ideal observer for 
signal-known-exactly patterns. And you can generate Gaussian-windowed sinusoids and add them to gaussian white noise. 
If you measure the percent correct, and convert that to d' for the human observer, you can calculate the absolute efficiency 
for human detection--and contribute to answer the question of what the eye sees best.

Watson, Barlow & Robson (1983) found that that a 7 c/deg grating drifting at 4 Hz, (with a narrow gaussian envelope in 
space and time) was detected more efficiently than other patterns. Further, the quantum efficiency was very low (<0.05%).

Kersten (1984) measured efficiency for 1-d gratings (i.e. vertical) in temporal (1-d spatial) visual noise for various spatial 
frequencies and widths. 
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Peak efficiency was found for patterns of about the same shape, regardless of spatial frequency. The cross-sectional profiles 
for high efficiency patterns corresponded to the diagonals in the above graph and looked like:

Psychophysical measurements across spatial scale haven't been made systematically yet for various vertical sizes. One 
prediction would be that images of the following type would be efficiently detected in noise:

When the filters have the same shape except for a change of scale (xØax), they are called self-similar.
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Bottom-line: image coding in terms of scale and orientation:
Amodel for human spatial image representation

At each spatial location, project the image onto a collection of basis vectors (i.e. compute the dot product) that span a range 
of spatial scales and orientations. A subset of these basis images is illustrated below:

In general, these neural models of basis functions may be over-complete, and non-orthogonal. And there may be a range of 
phases. Above we show only the "sine-phase" or "edge-detectors" of Hubel and Wiesel.

The self-similar idea is important to vision because of the need for some kind of scale-invariance. Further, the self-similar 
aspect of these neural models bore a close resemblance to the emerging mathematical field of wavelet analysis. The empha-
ses are different--over-completeness may be important and vision does the projections in parallel (the serial algorithmic 
component of wavelet computation is integral to the mathematical interest).

Neural images: Gabor filtering of image of a face

A collection of spatial filters all of of the same type, but operating at different locations, is called a channel. One can use 
convolution to produce a "neural image" to represent the spatial distribution of activity in a topographic representation of 
the filtered image information in a subset of neurons that all share the same basic spatial filter template.
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‡ The input image -- face

Short[face,16]

Há1àL

size = Dimensions[face][[1]];
hsize = size/2

General::spell1 :  Possible spelling error: new symbol name "hsize" is similar to existing symbol "size". More…

32

‡ Find the amplitude spectrum (spectrum) and the phase spectrum (phase) for the face picture. Chop[] 

sets small values to zero. Note that most of the energy is near zero. 

faceft = Fourier[face];
facespectrum = Chop[Abs[faceft]];
facephase = Chop[Arg[faceft]];

shift[mat_,size_] :=
Transpose[RotateRight[Transpose[RotateRight[mat,size]],size]]

cgabor[x_,y_, fx_, fy_,sig_] :=
N[Exp[(-x^2 - y^2)/(2 sig*sig)] Cos[

2 Pi (fx x + fy y)]];

And a sine-phase filter, sgabor[] which is odd-symmetric:
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sgabor[x_,y_, fx_, fy_,sig_] := 
N[Exp[(-x^2 - y^2)/(2 sig*sig)] Sin[

2 Pi (fx x + fy y)]];
filter = Table[sgabor[i/32,j/32,4,4,1/16],

{i,-hsize,hsize-1},{j,-hsize,hsize-1}];

filterft = Fourier[shift[filter,hsize]];
ListDensityPlot[fface = Chop[

t = InverseFourier[filterft faceft]],
Mesh->False];
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Neural image? Or neural image representation?

We can view the response activities of a family of receptive fields of neurons as representing a filtered neural image of the 
input image. Although useful, this view can be misleading when we start to think about function, for "who is looking at the 
image"? 

Alternatively, thinking in terms of basis functions gives us another perspective. We can view the response activities of a 
family of receptive fields as a representation of the input image. If linear, an activity is the result of a projection of an image 
on to a basis function (receptive field weights). Given such a representation we can begin to ask questions like:

1. Is the neural basis set complete? Can any image be represented? 

2. A closely related question is: Is any information lost? I.e. we do the inverse transformation, can the original input be 
reconstructed?

3. Maybe the neural basis set is "over-complete"?

4. Are the neural basis functions orthogonal? Are they normal?
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Next time
What is the computational significance of a wavelet-like decomposition?

Edge detection?

-> analysis of what vision needs to recognize objects, etc..

Image manipulations, useful for final projects

Psychophysical techniques--"classification images", reverse correlation

Java-based add-ons for Mathematica and Matlab

Appendices

Exercise: Hermann grid

Below is the Hermann Grid. Notice the phantom dark spots where the white lines cross. Can you explain what you see in 
terms of lateral inhibition?

width = 5; gap = 1; nsquares = 6;

hermann = Flatten@Table@8Rectangle@8x, y<, 8x + width, y + width<D<,
8x, 0, Hwidth + gapL * Hnsquares - 1L, width + gap<,

8y, 0, Hwidth + gapL * Hnsquares - 1L, width + gap<D, 1D;
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Show@Graphics@hermann, AspectRatio -> 1DD;
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‡ 4 spatial frequencies & center-surround weighted filter

Grating@x_, y_, fx_, fy_D := Cos@2 Pi Hfx x + fy yLD;
g = Table@DensityPlot@0.25 * Grating@x, y, fx, 0D, 8x, -1, 1<,

8y, -1, 1<, PlotPoints Ø 64, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-1, 1<, DisplayFunction Ø IdentityD, 8fx, 1, 7, 2<D;

f = Table@DensityPlot@DOG@x, y, 1, 2D, 8x, -4, 4<, 8y, -4, 4<,
Mesh Ø False, PlotPoints Ø 64, PlotRange Ø 8-1, 1<,
DisplayFunction Ø IdentityD, 8fx, 1, 1<D;

Show@GraphicsArray@8g@@1DD, g@@2DD, g@@3DD, g@@4DD<D,
DisplayFunction Ø $DisplayFunction D;

Show@GraphicsArray@8f@@1DD<D, DisplayFunction Ø $DisplayFunction D;
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‡ Gabor basis set

Basis set: Cartesian representation of Gabor functions:

cgabor[x_,y_, fx_, fy_,s_] := 
Exp[-(x^2 +  y^2)/s^2] Cos[2 Pi(fx x + fy y)];
sgabor[x_,y_, fx_, fy_, s_] := 
Exp[-(x^2 +  y^2)/s^2] Sin[2 Pi(fx x + fy y)];
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Various  frequencies , vertical orientations,  and  fixed width

vtheta = Table[0, {i1,4}];
vf = {.5,1,2,4};
swidth = {4};

gfreq = Table[DensityPlot[cgabor[x,y,vf[[i]] Cos[ vtheta[[j]] ], vf[[i]] 
Sin[ vtheta[[j]] ], swidth[[k]] ], {x,-2,2}, {y,-2,2},PlotPoints->64, 
Mesh->False,  PlotRange->{-1,1}, DisplayFunction->Identity],{i, 1, 4}, 
{j, 1, 1},{k,1,1}];

gfreq@@1, 1DD

8Ü DensityGraphics Ü<

Dimensions@gfreqD

84, 1, 1<

Show@GraphicsArray@8gfreq@@1, 1, 1DD, gfreq@@2, 1, 1DD, gfreq@@3, 1, 1DD<D,
DisplayFunction Ø $DisplayFunctionD;
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Various widths , vertical orientations,  and  fixed center frequency

vtheta = Table[0, {i1,4}]; vf = {1};
swidth = {.25,.5,1,2,4};

gwidth = Table[DensityPlot[cgabor[x,y,vf[[i]] Cos[ vtheta[[j]] ],vf[[i]] 
Sin[ vtheta[[j]] ], swidth[[k]] ], {x,-2,2}, {y,-2,2},PlotPoints->64, 
Mesh->False, Frame->False, PlotRange->{-1,1}, 
DisplayFunction->Identity],{i, 1, 1}, {j, 1, 1},{k,1,4}];
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Show@GraphicsArray@8gwidth@@1, 1, 1DD, gwidth@@1, 1, 2DD,
gwidth@@1, 1, 3DD<D, DisplayFunction Ø $DisplayFunctionD;

Vertical orientations, and center frequencies of the basis set

vtheta = Table[0, {i1,4}];
vf = {.5, 1, 2, 4};

Various frequencies, but with the width, s,  proportional to the reciprocal of spatial 
frequency. This maintains a constant bandwidth in octaves.

vtheta = Table[0, {i1,4}];
vf = {1/2,1,2,4};
swidth = {.25,.5,1,2,4};

gfixedoctave=Table[DensityPlot[cgabor[x,y,vf[[i]]  Cos[ vtheta[[j]] ], 
vf[[i]] Sin[ vtheta[[j]] ], .5/vf[[i]] ], {x,-2,2}, {y,-2,2},
PlotPoints->64, Mesh->False, Frame->False, 

PlotRange->{-1,1},DisplayFunctionØIdentity],
{i, 1, 4}, {j, 1, 1}];

Show@GraphicsArray@8gfixedoctave@@1, 1DD, gfixedoctave@@2, 1DD,
gfixedoctave@@3, 1DD, gfixedoctave@@4, 1DD<D,

DisplayFunction Ø $DisplayFunctionD;
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gfixedoctave2=Table[Plot[cgabor[x,0,vf[[i]] Cos[ vtheta[[j]] ], 
vf[[i]] Sin[ vtheta[[j]] ], .5/vf[[i]] ], {x,-2,2},
PlotPoints->64, Axes->False,PlotRange->{-1,1},DisplayFunctionØ

Identity],
{i, 1, 4}, {j, 1, 1}];

Show@GraphicsArray@8gfixedoctave2@@1, 1DD, gfixedoctave2@@2, 1DD,
gfixedoctave2@@3, 1DD, gfixedoctave2@@4, 1DD<D,

DisplayFunction Ø $DisplayFunctionD;

Various orientations, and center frequencies of the basis set

vtheta = Table[i1 Pi/4, {i1,4}];
vf = {.5, 1, 2, 4};

gorientsize = Table[DensityPlot[sgabor[x,y,vf[[i]] Cos[ vtheta[[j]] ], 
vf[[i]] Sin[ vtheta[[j]] ], .5/vf[[i]] ], {x,-2,2}, {y,-2,2},
PlotPoints->64, Mesh->False,Frame->False,  

PlotRange->{-1,1},DisplayFunctionØIdentity],
{i, 1, 4}, {j, 1, 4}];

Dimensions@gorientsizeD

84, 4<

Show@GraphicsArray@8gorientsize@@1, 1DD, gorientsize@@2, 1DD,
gorientsize@@3, 1DD, gorientsize@@4, 1DD<D,

DisplayFunction Ø $DisplayFunctionD;
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Show@GraphicsArray@8gorientsize@@1, 2DD, gorientsize@@2, 2DD,
gorientsize@@3, 2DD, gorientsize@@4, 2DD<D,

DisplayFunction Ø $DisplayFunctionD;

Show@GraphicsArray@8gorientsize@@1, 3DD, gorientsize@@2, 3DD,
gorientsize@@3, 3DD, gorientsize@@4, 3DD<D,

DisplayFunction Ø $DisplayFunctionD;

Show@GraphicsArray@8gorientsize@@1, 4DD, gorientsize@@2, 4DD,
gorientsize@@3, 4DD, gorientsize@@4, 4DD<D,

DisplayFunction Ø $DisplayFunctionD;

<<Statistics`ContinuousDistributions`

vtheta = Table[0, {i1,4}];
(*vf = {1/4,1/2,1,2};*)
vf = {1/4,1/2,1,2};
swidth = {.25,.5,1,2,4};

gwidthnoise =
Table@DensityPlot@Random@NormalDistribution@0, .4DD +

cgabor@x, y, vf@@iDD Cos@ vtheta@@jDD D,
vf@@iDD Sin@ vtheta@@jDD D, swidth@@kDD D, 8x, -2, 2<, 8y, -2, 2<,
PlotPoints -> 64, Mesh -> False, Frame Ø False, PlotRange -> 8-1, 1<,

DisplayFunction Ø IdentityD,
8i, 1, 4<, 8j, 1, 1<, 8k, 1, 4<D;
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Show@GraphicsArray@8gwidthnoise@@1, 1, 1DD, gwidthnoise@@1, 1, 2DD,
gwidthnoise@@1, 1, 3DD, gwidthnoise@@1, 1, 4DD<D,

GraphicsSpacing Ø 80, 0<D;
Show@GraphicsArray@8gwidthnoise@@2, 1, 1DD, gwidthnoise@@2, 1, 2DD,

gwidthnoise@@2, 1, 3DD, gwidthnoise@@2, 1, 4DD<D,
GraphicsSpacing Ø 80, 0<D;

Show@GraphicsArray@8gwidthnoise@@3, 1, 1DD, gwidthnoise@@3, 1, 2DD,
gwidthnoise@@3, 1, 3DD, gwidthnoise@@3, 1, 4DD<D,

GraphicsSpacing Ø 80, 0<D;
Show@GraphicsArray@8gwidthnoise@@4, 1, 1DD, gwidthnoise@@4, 1, 2DD,

gwidthnoise@@4, 1, 3DD, gwidthnoise@@4, 1, 4DD<D,
GraphicsSpacing Ø 80, 0<D;

30 9.NeuralSpatialFiltering.nb



References
Adelson, E. H., Simoncelli, E., & Hingorani, R. (1987). Orthogonal Pyramid Transforms for Image Coding. Paper pre-
sented at the Proc. SPIE - Visual Communication & Image Proc. II, Cambridge, MA.

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981). Efficiency of human visual signal discrimination. 
Science, 214, 93-94.

Daugman, J. G. (1988). An information-theoretic view of analog representation in striate cortex, Computational Neuro-
science. Cambridge, Massachusetts: M.I.T. Press.

De Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. 
Vision Res, 22(5), 545-559.

De Valois, R. L., Yund, E. W., & Hepler, N. (1982). The orientation and direction selectivity of cells in macaque visual 
cortex. Vision Res, 22(5), 531-544.

Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 
(London), 187, 517-552.

Hubbard, B. B. (1998). The world according to wavelets : the story of a mathematical technique in the making (2nd ed.). 
Wellesley, Mass: A.K. Peters.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive Fields of Single Neurons in the Cat's Striate Cortex. J. Physiol., 148, 
574-591.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive Fields and Functional Architecture of Monkey Striate Cortex. J. Physiol., 
215-243.

Gerstein, G. L., & Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophysical 
Journal, 4, 41-68.

Kersten, D. (1984). Spatial summation in visual noise. Vision Research, 24, 1977-1990.

Shapley, R., & Perry, H. H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends in 
Neuroscience, 9(5), 229-235.

Silverman, M. S., Grosof, D. H., DeValois, R. L., & Elfar, S. D. (1989). Spatial-frequency organization in primate striate 
cortex., 86, 711-715.

Silverman, M. S., Grosof, D. H., De Valois, R. L., & Elfar, S. D. (1989). Spatial-frequency organization in primate striate 
cortex. Proc Natl Acad Sci U S A, 86(2), 711-715.

Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable Multi-scale Transforms. IEEE Trans. 
Information Theory, 38(2), 587--607.

Watson, A. B., Barlow, H. B., & Robson, J. G. (1983). What does the eye see best? Nature, 31,, 419-422.

Watson, A. B. (1987). Efficiency of a model human image code. Journal of the Optical Society of America, A, 4(12), 
2401-2417.

Watson,  Andrew B. (2000) Visual detection of spatial contrast patterns: Evaluation of five simple models (2000), Optics 
Express 6(1), 12-33 (http://www.opticsexpress.org/oearchive/source/14103.htm).

9.NeuralSpatialFiltering.nb 31



© 2004, 2006 Daniel  Kersten,  Computational  Vision Lab, Department  of Psychology,   University  of Minnesota.
kersten.org

32 9.NeuralSpatialFiltering.nb


