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‡ Initialize standard library files:

<< Graphics`Graphics3D`
<< Statistics`MultinormalDistribution`
<< Graphics`ImplicitPlot`

<< Statistics`NormalDistribution`
Off@General::spell1D;

Goals

Last time

Developed signal detection theory for characterizing an ideal observer for detecting a "known" pattern in additive gaussian 
noise.

The statistical treatment is a special case of Bayesian inference.

Showed how human and ideal performance can be quantitatively compared by their respective sensitivities, d's.

This time

Extend the tools of signal detection theory to "pattern inference theory", to begin to deal with more complex tasks.

How to manage complex pattern inference tasks?

‡ Two main observations for simplification: 

Graphical models of influence



Task dependence: Bayesian inference theory -> Bayesian decision theory, to take into account what information is impor-
tant and what is not. I.e. what is signal and what is noise.

(Related to "integrating out", below.)

Graphical Models of dependence
The generative model in the previous lecture was simple. The signals were two fixed images (e.g. a sinusoidal grating and a 
uniform image), and the image variability was solely due to additive noise. What about natural images? 

The "universe" of possible factors generating an image could be expressed by constructing the joint probability on all 
possible combinations of descriptions:

p(scene,object class, environment lighting,object reflectivity, object shape, global features, local features, haptic)

where each of the variable classes is itself a high-dimensional description, but this is hopelessly large, because of the 
combinatorial problem. 

 Natural images are complex, and in general it is difficult and often impractical to build a detailed quantitative generative 
model.But natural images do have regularities, and we can get insight into the problem by considering how various factors 
might produce natural images.

One way to begin simplifying the problem is to note that not all variables have a direct influence on each other. So draw a 
graph in which lines only connect variables that influence each other. In particular, we will use directed graphs to represent 
conditional probabilities.
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Graphs: causal structure and conditional independence

The idea is that natural image pattern formation is specified by a high-dimensional joint probability, requiring an elabora-
tion of the causal structure that is more complex than the simple SDT model.  We represent the probabilistic structure of the 
joint distribution P(S,L,I) by a Bayes net (e.g. Ripley, 1996}, which is a graphical model that expresses how (random) 
variables influence each other.  There are three basic building blocks: converging, diverging, and intermediate nodes.  For 
example, multiple (e.g. scene) variables causing a given image measurement, a single variable producing multiple image 
measurements, or a cause indirectly influencing an image measurement through an intermediate variable.  These types of 
influence provide a first step towards modeling the joint distribution and the means to compute probabilities of the unknown 
variables given known values.

Components of the generative structure for image patterns involve converging, diverging,and intermediate nodes. For 
example,these could correspond to:multiple (scene) causes {shape S1, illumination S2 giving rise to the same image measure-
ment, I ; one cause, S influencing more than one image measurement, {color, I1, brightness, I2}; a scene (or other) cause S, 
{object identity, S} influencing an image measurement (image contour) through an intermediate variable L (3D shape) .

A basic rule of probability is the product rule, in which the joint probability p(A,B) = p(A|B)p(B) (see Probability-
Overview.nb).

The arrows above is a graphical shorthand that tells us how to factor a joint probability into conditionals. So for the three 
examples above, we have:

p(S1,S2,I)=p(I|S1,S2)p(S1)p(S2)

p(S,I1,I2)=p(I1|S)p(I2|S)p(S)

p(S,L,I)=p(I|L)p(L|S)p(S)

Basic rules: Condition on what is known, and integrate out what you don't care about

‡ Condition on what is known:

Given a scene description S, and image features I, the "universe" of possibilities is:

(1)p HS, IL
If we know (i.e. the visual system has measured some image feature I), the joint can be turned into a conditional (posterior):

(2)p HS » IL = p HS, IL ê p HIL
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‡ Integrate out what you don't care about

We don't care to estimate the noise (or other generic, nuisance, or secondary variables):

(3)

p HSsignal » IL = ‚
Snoise

p HSsignal , Snoise » IL,

or if continuous = ‡
Snoise

p HSsignal , Snoise » IL „Snoise

Called "integrating out" or "marginalization"

Graphical models and general inference

‡ Three types of nodes in a graphical model: known, unknown to be estimated, unknown to be integrated 

out (marginalized)

We have three basic states for nodes in a graphical model: 

known

unknown to be estimated

unknown to be integrated out (marginalization). 

We have causal state of the world S, that gets mapped to some image data I, perhaps through some intermediate 
parameters L, i.e. S->L->I. 

So for example, face identity S determines facial shape L,  which in turn determines the image I itself. Consider 
three very broad types of task:

‡ Image data inference: synthesis 

Image synthesis (forward, generative model): We want to model I through p(I|S). In our example, we want to specify 
"Bill", and then p(I|S="Bill") can be implemented as an algorithm to spit out images of Bill. If there is an intermediate 
variable, L, it gets integrated out.

‡ Hypothesis ("inverse") inference

Hypothesis inference: we want to model samples for S: p(S|I).Given an image,we want to spit out likely object identities,so 
that we can minimize risk,or do MAP classification for accurate object identification. Again there is an intermediate vari-
able, L, it gets integrated out. (Although we didnt' set up our SDT examples with dots and grating patterns to require explicit 
integrating out of the noise variables, it could be done that way.)

As emphasized before, the primary focus of this course is to treat perception as "inverse" inference.

4 6_BayesDecisionTheory.nb



‡ Learning (parameter inference)

Although we have not described it in this lecture, learning can also be viewed as estimation: we want to model L: p(L|I,S), 
to learn how the intermediate variables are distributed. Given lots of samples of objects and their images, we want to learn 
the mapping parameters between them. (Alternatively, do a mental switch and consider a neural network in which an input 
S gets mapped to an output I through intermediate variables L. We can think of L as representing synaptic weights to be 
learned.)

Two basic examples in standard statistics are:

Regression: estimating parameters that provide a good fit to data. E.g. slope and intercept for a straight line through points 
{xi ,yi}.

Density estimation: Regression on a probability density functions, with the added condition that the area under the fitted 
curve must sum to one.

Primary, secondary variables.

The following figure draws a parallel between the causal structure, as determined by the generative model, for signal 
detection theory (as in the light detection problem), and the general problem of visual inference.

We can interpret the causal structure in terms of conditional probability.

The top panel shows one possible generative graph structure for an  ideal observer problem in classical signal detection 
theory (SDT).  The data are determined by the signal hypotheses plus (additive gaussian) noise. 

Knowledge is represented by the joint probability p(x,H,n)=p(x|H,n)p(H)p(n).  The lower panel shows a simplified exam-
ple of the generative structure for perceptual inference from a pattern inference theory perspective.  The image measure-
ments (x) are determined by a typically non-linear function « of primary signal variables (Se ) and confounding secondary 
variables (Sg ).  Knowledge is represented by the joint probability p(x,Se ,Sg ).  Both scene and image variables can be high  
dimensional vectors. In general, the causal structure of natural image patterns is more complex and consequently requires 
elaboration of its graphical representation. For SDT and pattern inference theory, the task is to make a decision about the 
signal hypotheses or primary signal variables, while discounting the noise or secondary variables.  Thus optimal perceptual 
decisions are determined by p(x,Se ), which is derived by summing over the secondary variables (i.e. marginalizing with 
respect to the secondary variables):
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Knowledge is represented by the joint probability p(x,H,n)=p(x|H,n)p(H)p(n).  The lower panel shows a simplified exam-
ple of the generative structure for perceptual inference from a pattern inference theory perspective.  The image measure-
ments (x) are determined by a typically non-linear function « of primary signal variables (Se ) and confounding secondary 
variables (Sg ).  Knowledge is represented by the joint probability p(x,Se ,Sg ).  Both scene and image variables can be high  
dimensional vectors. In general, the causal structure of natural image patterns is more complex and consequently requires 
elaboration of its graphical representation. For SDT and pattern inference theory, the task is to make a decision about the 
signal hypotheses or primary signal variables, while discounting the noise or secondary variables.  Thus optimal perceptual 
decisions are determined by p(x,Se ), which is derived by summing over the secondary variables (i.e. marginalizing with 
respect to the secondary variables):

(4)pHx, Se L = ‡
Sg

pHx, Se , Sg L „ Sg

‡ Conditional dependence and independence

Influences between variables are represented by conditioning, and a graphical model expresses the conditional independen-
cies between variables.  Two random variables may only become independent,  once the value of some third variable is 
known.  This is called conditional independence. From the probability overview, you note that two random variables are 
independent if and only if their joint probability is equal to the product of their individual probabilities.  Thus, if p(A,B) = 
p(A)p(B), then A and B are independent.  If p(A,B|C) = p(A|C)p(B|C), then A and B are conditionally independent.  When 
corn prices drop in the summer, hay fever incidence goes up.  However, if the joint on corn price and hay fever is condi-
tioned on ``ideal weather for corn and ragweed'', the correlation between corn prices and hay fever drops.  This is because 
Corn price and hay fever symptoms are conditionally independent. 

There is a correlation between eating ice cream and drowning. Why? What event should you condition on to make the 
dependence go away?

What is noise? Primary and secondary variables in SDT and in pattern inference theory

Noise is what you don't care to estimate, but contributes to the data.

More complex generative and inference tasks

Generalize the notion of discounting
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Some basic graph types in vision

From: Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current Opinion in Neuro-
biology, 13(2), 1-9.

‡ Basic Bayes

p@S » ID =
p@I » SD p@SD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p@ID
Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as data. So for visual 
inference, Y = S (the scene), and X = I (the image data), and I = f(S).

We'd like to have:

p(S|I), where is the posterior probability of the scene given the image

-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like to base our deci-
sions on, because as we discuss below,  picking the hypothesis S which maximizes the posterior (i.e. maximum a posteriori 
or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.
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See: Sinha, P., & Adelson, E. (1993). Recovering reflectance and illumination in a world of painted 
polyhedra. Paper presented at the Proceedings of Fourth International Conference on Computer Vision, 
Berlin.
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‡ Discounting

The generative structure of the SDT problems we've looked at.

I=⁄S2
pHS2, S1 » IL

‡ Cue integration

Here two measurements (shadow displacement and stereo disparity) may be correlated. However, if S is fixed, then they 
become conditionally independent.
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‡ Perceptual explaining away

The idea here is that one can have a probabilistic structure that gives rise to "competing explanations" for some image data. 

This is a preview. We'll see more examples of this later in the course.

See: Lorenceau, J., & Shiffrar, M. (1992). The influence of terminators on motion integration across 
space. Vision Res, 32(2), 263-273.

Bayesian Decision Theory: Natural loss functions

Bayes Decision theory, loss, and risk

We'd now like to generalize the idea of "integrating out" unwanted variables to allow us to put weights on how important a 
variable is for a task.

Earlier we noted that the costs of certain kinds of errors (e.g. a high cost to false alarms) could affect the decision criterion. 
Even though the sensitivity of the observer is essentially unchanged (e.g. the d' for the two Gaussian distributions remains 
unchanged), increasing the criterion can increase the overall error rate. This isn't necessarily bad. 

A doctor might say that since stress EKG's have about a 30% false alarm rate, it isn't worth doing. The cost of a false alarm 
is high--at least for the HMO, with the resulting follow-ups, angiograms, etc.. And some increased risk to the patient of 
extra unnecessary tests.  But, of course, false alarm rate isn't the whole story, and one should ask what the hit rate (or 
alternatively the miss rate) is? Miss rate is about 10%. (Thus, d' is actually pretty high--what is it?). From the patient's point 
of view, the cost of a miss is very high, one's life. So a patient's goal would not be to minimize errors (i.e. probability of a 
mis-diagnosis), but rather to minimize a measure of subjective cost that puts a very high cost on a miss, and low cost on a 
false alarm.

Although decision theory in vision has traditionally been applied to analogous trade-offs that are more cognitive than 
perceptual, recent work has shown that perception has implicit, unconscious trade-offs in the kinds of errors that are made. 
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One example is in shape from shading that we've seen before. An image provides the "test measurements" that can be used 
to estimate an object's shape and/or estimate the direction of illumination. Accurate object identification often depends 
crucially on an object's shape, and the illumination is a confounding (secondary) variable. This suggests that visual recogni-
tion should put a high cost to errors in shape perception, and lower costs on errors in illumination direction estimation. So 
the process of perceptual inference depends an task. The effect of marginalization in the  fruit example illustrated task-depen-
dence. Now we show how marginalization can be generalized through decision theory to model other kinds of goals than 
error minimization (MAP) in task-dependence.

Bayes Decision theory provides the means to model visual performance as a function of utility.

Some terminology. We've used the terms switch state, hypothesis, signal state as essentially the same--to represent the 
random variable indicating the state of the world--the "state space". So far, we've assumed that the decision, d,  of the 
observer maps directly to state space, d->s. We now clearly distinguish the decision space from the state or hypothesis 
space, and introduce the idea of a loss L(d,s), which is the cost for making the decision d, when the actual state is s. 

Often we can't directly measure s, and we can only infer it from observations. Thus, given an observation (image measure-
ment) x, we define a risk function that represents the average loss over signal states s:

(5)R Hd; xL = ‚
s

L Hd, sL p Hs » xL

This suggests a decision rule: a(x)=argmin
d

 R(d;x). But not all x are equally likely. This decision rule minimizes the 

expected risk average over all observations:

(6)R HaL = ‚
x

R Hd; xL p HxL

We won't show them all here, but with suitable choices of likelihood, prior, and loss functions, we can derive standard 
estimation procedures (maximum likelihood, MAP, estimation of the mean) as special cases.

For the MAP estimator, 

(7)R Hd; xL = ‚
s

L Hd, sL p Hs » xL = ‚
s

H1 - dd,sL p Hs » xL = 1 - p Hd » xL

where dd,s is the discrete analog to the Dirac delta function--it is zero if d≠s, and one if d=s. 

Thus minimizing risk with the loss function L = H1 - dd,sLis equivalent to maximizing the posterior, p(d|x). 

What about marginalization? You can see from the definition of the risk function, that this corresponds to a uniform loss: 

L = -1.
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(8)R Hs1; xL = ‚
s2

L Hd2, s2L p Hs1, s2 » xL

So for our face recognition example, a really huge error in illumination direction has the same cost as getting it right.For the 
fruit example, optimal classification of the fruit identity required marginalizing over fruit color--i.e. effectively treating fruit 
color identification errors as equally costly...even tho', doing MAP after marginalization effectively means we are not 
explicitly identifying color.

Graphical models for Hypothesis Inference: Three types
This section shows the common structure shared by three types of inference: detection, classification, and estimation.

Decisions can be right or wrong regarding a discrete hypothesis (detection, classification), or have some metric distance 
from an hypothesis along a continuous dimensions (estimation). Each decision or estimation has an associated loss function. 
There is a common graphical structure to each type of inference.

Hypothesis inference: Three types

‡ Detection

Let the decision variable d, be represented by s̀.
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‡ loss function for yes/no task

‡ Classification

 MAP rule: argmax
i

8pHSi » xL<.
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‡ Continous estimation

 argmax
S

8pHS » x<<
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One can show that L(d,s) = -(d-s)^2 produces an estimator that finds the mean, L(d,s) = -d(d-s), does MAP (i.e. finds the 
mode), and L(d,s) = 1 is equivalent to marginalization (integrating out s).
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Slant estimation example

From: Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5(6), 
508-510.
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Mathematica code to illustrate Bayesian estimation of surface slant and aspect ratio

This code was used to produce the figure in a Nature Neuroscience News & Views article by Geisler and Kersten (2002) 
that put in context a paper by Weiss, Simoncelli and Adelson.

Wilson S. Geisler and Daniel Kersten (2002) Illusions, perception  and Bayes. Nature Neuroscience, 5 (6), 508-510. Or 
(pdf).

http://gandalf.psych.umn.edu/~kersten/kersten-lab/papers/GeislerKerstennn0602-508.pdf

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12037517

For:  Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat Neurosci, 5(6), 
598-604.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12021763

‡ Initialization

<< Graphics`Graphics3D`
<< Statistics`MultinormalDistribution`
<< Graphics`ImplicitPlot`

npoints = 128;
loaspect = 0;
hiaspect = 5;
$TextStyle = 8FontFamily Ø "Helvetica", FontSize Ø 14<
Fswitch = True;

8FontFamily Ø Helvetica, FontSize Ø 14<

PadMatrix@mat_, gray_, n_D := Module@8d<,
d = Dimensions@matD;
Return@PadRight@PadLeft@mat, 8d@@1DD + n, d@@2DD + n<, grayD,

8d@@1DD + 2 * n, d@@2DD + 2 * n<, grayDD;
D;

‡ Init delta

gdelta@x_, w_D := 1 - HUnitStep@x + w ê 2D - UnitStep@x - w ê 2DL;
H*Plot@gdelta@x,1D,8x,-10,10<,PlotRangeØ80,2<D;*L
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‡ Introduction

Consider the above figure.

Bayesian ideal observers for tasks involving the perception of objects or events that differ along two physical dimensions, 
such  as aspect ratio and slant, size and distance, or speed and direction of motion. When a stimulus is received, the ideal 
observer computes the likelihood of receiving that stimulus for each possible pair of dimension values (that is, for each 
possible interpretation). It then multiplies this likelihood distribution by the prior probability distribution for each pair of 
values to obtain the posterior probability distribution—the probability of each possible pair of values given the stimulus. 
Finally, the posterior probability distribution is convolved with a utility function, representing the costs and benefits of 
different levels of perceptual accuracy, to obtain the expected utility associated with each possible interpretation. The ideal 
observer picks the interpretation that maximizes the expected utility. (Black dots and curves indicate the maxima in each of 
the plots.) As a tutorial example, the figure was constructed with a specific task in mind; namely, determining the aspect 
ratio and slant of a tilted ellipse from a measurement of the aspect ratio (x) of the image on the retina. The black curve in the 
likelihood plot shows the ridge of maximum likelihood corresponding to the combinations of slant and aspect ratio that are 
exactly consistent with x; the other non-zero likelihoods occur because of noise in the image and in the measurement of x. 
The prior probability distribution corresponds to the assumption that surface patches tend to be slanted away at the top and 
have aspect ratios closer to 1.0. The asymmetric utility function corresponds to the assumption that it is more important to 
have an accurate estimate of slant than aspect ratio.

‡ Calculate Likelihood function and its maxima

Image model determines the constraint, x = d Cos[alpha] + noise, determines the 
likelihood

Assume noise has a Gaussian distribution with standard deviation = 1/5;

Assume an image measurement (x=1/2)
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likeli@alpha_, x_, d_, s_D :=
Exp@-HHx - d Cos@alphaDL^2L ê H2 s^2LD H1 ê Sqrt@2 Pi s^2DL
likeli@a, x, d, sD
x = 1 ê 2; s = 1 ê 5;
like = likeli@a, x, d, sD

‰
- H0.2-d cosHaLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

è!!!!!s2

5 ‰- 25ÅÅÅÅÅÅÅÅÅÅ2 I 1ÅÅÅÅÅÅ2 -d cosHaLM2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

Plot likelihood 

gdlike = DensityPlot@like, 8d, loaspect, hiaspect<, 8a, -Pi ê 2, Pi ê 2<,
PlotPoints Ø npoints, Mesh Ø False,
ColorFunction -> HRGBColor@1 - H0.1 + 0.8 #L, 1, 1D &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, RotateLabel Ø FalseD;

0 1 2 3 4 5
aspect ratio, d

-1.5
-1

-0.5
0

0.5
1

1.5

slant angle, a
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Plot likelihood maxima

‡ There is no unique maximum. The likelihood function has a ridge

temp2 = Table@Point@8x ê Cos@alphaD, alpha<D, 8alpha, -Pi ê 2, Pi ê 2, .001<D;
temp =
Join@Table@Point@8d, ArcCos@x ê HdLD<D, 8d, loaspect + .5, hiaspect, .01<D,
temp2D;

gtemp = Show@Graphics@8PointSize@.01D, temp<DD;
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Plot likelihood together with maximum along the ridge

gdlike = DensityPlot@like, 8d, loaspect, hiaspect<, 8a, -Pi ê 2, Pi ê 2<,
PlotPoints Ø npoints, Mesh Ø False,
ColorFunction -> HRGBColor@1 - H0.1 + 0.8 #L, 1, 1D &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, RotateLabel Ø False,
Frame Ø Fswitch, DisplayFunction Ø IdentityD;

glikemax = Show@gdlike, gtemp, DisplayFunction Ø $DisplayFunctionD;

0 1 2 3 4 5
aspect ratio, d

-1.5
-1

-0.5
0

0.5
1

1.5

slant angle, a

‡ Calculate the prior, and find its maximum

The prior probability distribution corresponds to the assumption that surface patches tend to be 
slanted away at the top and have aspect ratios closer to 1.0. We model the prior by a bivariate 
gaussian:
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PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D

‰- 1ÅÅÅÅÅÅ2 8a-ma ,d-md <.R-1 .8a- ma ,d-md <
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 p
è!!!!!!†R§

R1 = 88.25, 0<, 80, .25<<;
ndist3 = MultinormalDistribution@8Pi ê 4., 1<, R1D;
pdf3 = PDF@ndist3, 8a, d<D;
FindMinimum@-pdf3, 8d, 5<, 8a, 1<D
gdprior = DensityPlot@pdf3^.4, 8d, loaspect, hiaspect<, 8a, -Pi ê 2, Pi ê 2<,

PlotPoints Ø npoints, Mesh Ø False,
ColorFunction -> HRGBColor@1, 1 - H0.1 + 0.8 #L, 1 - H0.1 + 0.8 #LD &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, RotateLabel Ø False,
DisplayFunction Ø IdentityD;

8-7.35283 µ 10-15 , 8d Ø 5., a Ø 1.<<

Show@gdprior, Graphics@8PointSize@.05D, Point@81, .785<D<D,
DisplayFunction Ø $DisplayFunctionD;

0 1 2 3 4 5
aspect ratio, d

-1.5
-1
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0

0.5
1

1.5

slant angle, a

‡ Calculate the posterior, and find its maximum
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More precisely, we'll calculate a quantity proportional to the posterior. The posterior is equal to the product of the likelihood 
and the prior, divided by the probability of the image measurement, x. Because the image measurement is fixed, we only 
need to calculate the product of the likelihood and the prior:

Clear@a, x, d, sD;
likeli@a, x, d, sD * PDF@MultinormalDistribution@8ma, md<, RD, 8a, d<D

‰
- Hx-d cosHaLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2 - 1ÅÅÅÅÅÅ2 8a-ma ,d-md <.R-1 .8a-ma ,d-md <
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 è!!!2 p3ê2 è!!!!!s2 è!!!!!!†R§

gdpost = DensityPlot@Hpdf3 * likeL, 8d, loaspect, hiaspect<,
8a, -Pi ê 2, Pi ê 2<, ColorFunction -> HRGBColor@1, 1, 1 - H0.01 + 0.9 #LD &L,
PlotPoints Ø npoints, Mesh Ø False,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, RotateLabel Ø False,
Frame Ø Fswitch, DisplayFunction Ø IdentityD;

FindMinimum@-pdf3 * like, 8d, 81, 3<<, 8a, 8.2, 1<<D

FindMinimum::nnum :  

The function value 8-0.0358912, -5.86992 µ 10-11 < is not a number at 8d, a< = J 1. 3.
0.2 1. N. More…

FindMinimum@-pdf3 like, 8d, 81, 3<<, 8a, 80.2, 1<<D
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Show@gdpost, Graphics@8PointSize@.05D, Point@8.88, .92<D<D,
DisplayFunction Ø $DisplayFunctionD;
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aspect ratio, d

-1.5
-1

-0.5
0

0.5
1

1.5

slant angle, a

‡ Compute expected loss--i.e. risk, and find its minimum

The expected loss is given by the convolution of the loss with the posterior:

                      risk=posterior*loss, where * means convolve; utility=-risk.

Loss function

The asymmetric utility function corresponds to the assumption that it is more important to have an accurate estimate of slant 
than aspect ratio. The loss function reflects the task. Accurate estimates of slant may be more important for an action such 
as stepping or grasping, whereas an accurate estimation of aspect ratio may be more important for determining object shape 
(circular coffee mug top or not?).
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maploss = Table@H1 - gdelta@x1d, .25DL * H1 - Hgdelta@x2d, 2DLL,
8x1d, -3, 3, 6 ê npoints<, 8x2d, -3, 3, 6 ê npoints<D;

gdloss = ListDensityPlot@maploss, Mesh Ø False,
ColorFunction -> HRGBColor@1 - H0.01 + 0.9 #L, 1 - H0.01 + 0.9 #L, 1D &L,
Frame Ø FalseD;

Convolve posterior with loss function

Convert function description to numerical arrays for convolving

post =
Transpose@Table@like * pdf3,

8d, loaspect, hiaspect, Hhiaspect - loaspectL ê npoints<,
8a, -Pi ê 2, Pi ê 2, Pi ê npoints<DD;

post2 = PadMatrix@post, 0, 16D;
maploss2 = PadMatrix@maploss, 0, 16D;
offset = Floor@Dimensions@maploss2D@@1DD ê 2D;
tempcon = ListConvolve@maploss2, post2, 8-1, -1<D;
risk2 = RotateLeft@tempcon, 8offset, offset<D;
risk = Take@risk2, 817, Dimensions@risk2D@@1DD - 16<,

817, Dimensions@risk2D@@1DD - 16<D;

grbrisk = ListDensityPlot@Map@#^1. &, riskD, Mesh Ø False,
ColorFunction -> HRGBColor@1, 1, 1 - H0.01 + 0.9 #LD &L,
FrameLabel Ø 8"aspect ratio, d", "slant angle, a"<, RotateLabel Ø False,
Frame Ø Fswitch, DisplayFunction Ø IdentityD;

Position@HriskL, Max@HriskLDD

H 108 27 L
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Show@grbrisk, Graphics@8PointSize@.05D, Point@827, 108<D<D,
DisplayFunction Ø $DisplayFunctionD;

0 20 40 60 80100120
aspect ratio, d

0
20
40
60
80

100
120

slant angle, a

‡ Exercise: Compute and plot expected loss for the transposed loss function

Inference: Fruit classification example 

This section provides another quantitative example of inference. It illustrates how the task (i.e. what you integrate out) can 
change what is the optimal decision.

(due to James Coughlan; see Yuille, Coughlan, Kersten & Schrater).
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Figure from Yuille, Coughlan, Kersten & Schrater.

The the graph specifies how to decompose the joint probability:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]

The prior model on hypotheses, F & C

More apples (F=1) than tomatoes (F=2), and:

ppF@F_D := If@F ã 1, 9 ê 16, 7 ê 16D;
TableForm@Table@ppF@FD, 8F, 1, 2<D, TableHeadings -> 88"F=a", "F=t"<<D

F=a 9ÅÅÅÅÅÅÅ
16

F=t 7ÅÅÅÅÅÅÅ
16

The conditional  probability cpCF[C|F]:
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cpCF@F_, C_D := Which@F ã 1 && C ã 1, 5 ê 9, F ã 1 && C ã 2, 4 ê 9,
F ã 2 && C ã 1, 6 ê 7, F ã 2 && C ã 2, 1 ê 7D;

TableForm@Table@cpCF@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g
F=a 5ÅÅÅÅ

9
4ÅÅÅÅ
9

F=t 6ÅÅÅÅ
7

1ÅÅÅÅ
7

So the joint is:

jpFC@F_, C_D := cpCF@F, CD ppF@FD;
TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g
F=a 5ÅÅÅÅÅÅÅ

16
1ÅÅÅÅ
4

F=t 3ÅÅÅÅ
8

1ÅÅÅÅÅÅÅ
16

We can marginalize to get the prior probability on color alone is:

ppC@C_D := ‚
F=1

2

jpFC@F, CD

Question: Is fruit identity independent of material color--i.e. is F independent of C?

‡ Answer

No.
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TableForm@Table@jpFC@F, CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
TableForm@Table@ppF@FD ppC@CD, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D

C=r C=g
F=a 5ÅÅÅÅÅÅÅ

16
1ÅÅÅÅ
4

F=t 3ÅÅÅÅ
8

1ÅÅÅÅÅÅÅ
16

C=r C=g
F=a 99ÅÅÅÅÅÅÅÅÅ

256
45ÅÅÅÅÅÅÅÅÅ
256

F=t 77ÅÅÅÅÅÅÅÅÅ
256

35ÅÅÅÅÅÅÅÅÅ
256

The generative model: Imaging probabilities

Analogous to collecting histograms for the two switch positions in the SDT experiment, suppose that we have gathered 
some "image statistics" which provides us knowledge of how the image measurements for shape Is, and for color Ic depend 
on the type of fruit F, and material color, C. For simplicity, our measurements are discrete and binary (a more realistic case, 
they would have continuous values), say Is = {am, tm}, and Ic = {rm, gm}.

P(I_S=am,tm | F=a) = {11/16, 5/16}

P(I_S=am,tm | F=t) = {5/8, 3/8}

P(I_C=rm,gm | C=r) = {9/16, 7/16}

P(I_C=rm,gm | C=g) = {1/2, 1/2}

We use the notation am, tm, rm, gm because the measurements are already suggestive of the likely cause. So there is a 
correlation between apple and apple-like shapes, am; and between red material, and "red" measurements. In general, there 
may not be an obvious correlation like this.

We define a function for the  probability of Ic given C,  cpIcC[Ic | C]:

cpIcC@Ic_, C_D := Which@Ic ã 1 && C ã 1, 9 ê 16, Ic ã 1 && C ã 2, 7 ê 16,
Ic ã 2 && C ã 1, 1 ê 2, Ic ã 2 && C ã 2, 1 ê 2D;

TableForm@Table@cpIcC@Ic, CD, 8Ic, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"Ic=rm", "Ic=gm"<, 8"C=r", "C=g"<<D

C=r C=g
Ic=rm 9ÅÅÅÅÅÅÅ

16
7ÅÅÅÅÅÅÅ

16

Ic=gm 1ÅÅÅÅ
2

1ÅÅÅÅ
2
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The  probability of Is conditional on F is cpIsF[Is | F]:

cpIsF@Is_, F_D := Which@Is ã 1 && F ã 1, 11 ê 16, Is ã 1 && F ã 2, 5 ê 8,
Is ã 2 && F ã 1, 5 ê 16, Is ã 2 && F ã 2, 3 ê 8D;

TableForm@Table@cpIsF@Is, FD, 8Is, 1, 2<, 8F, 1, 2<D,
TableHeadings -> 88"Is=am", "Is=tm"<, 8"F=a", "F=t"<<D

F=a F=t
Is=am 11ÅÅÅÅÅÅÅ

16
5ÅÅÅÅ
8

Is=tm 5ÅÅÅÅÅÅÅ
16

3ÅÅÅÅ
8

The total joint probability

We now have enough information to put probabilities on the 2x2x2 "universe" of possibilities, i.e. all possible combinations 
of fruit, color, and image measurements. Looking at the graphical model makes it easy to use the product rule to construct 
the total joint, which is:

 p[F, C, Is, Ic ] = p[ Ic | C ] p[C | F ] p[Is | F ] p[F ]:

jpFCIsIc@F_, C_, Is_, Ic_ D := cpIcC@ Ic, C D cpCF@F, C D cpIsF@Is, F D ppF@F D

Usually, we don't need the probabilities of the image measurements (because once the measurements are made, they are 
fixed and we want to compare the probabilities of the hypotheses. But in our simple case here, once we have the joint, we 
can calculate the probabilities of the image measurements through marginalization p(Is,Ic)=⁄C ⁄F pHF, C, Is, IcL, too:

jpIsIc@Is_, Ic_D := ‚
C=1

2

 ‚
F=1

2

 jpFCIsIc@F, C, Is, Ic D

Three MAP tasks

Suppose that we measure Is=am, and Is = rm. The measurements suggest "red apple", but to find the most probable, we 
need to take into account the priors too. 

‡ Define argmax[] function:

argmax@x_D := Position@x, Max@xDD;
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‡ Pick most probable fruit AND color--Answer "red tomato"

Using the total joint, p(F,C | Is, Ic) = pHF,C,Is,IcLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pHIs,IcL ∝ p(F,C,Is,Ic)

TableForm@jpFCIsIcTable = Table@jpFCIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
Max@jpFCIsIcTableD
argmax@jpFCIsIcTableD

C=r C=g
F=a 495ÅÅÅÅÅÅÅÅÅÅÅÅ

4096
77ÅÅÅÅÅÅÅÅÅÅÅÅ

1024

F=t 135ÅÅÅÅÅÅÅÅÅÅÅÅ
1024

35ÅÅÅÅÅÅÅÅÅÅÅÅ
2048

135
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1024

H 2 1 L

"Red tomato" is the most probable once we take into account the difference in priors.

Calculating p(F,C | Is, Ic). We didn't actually need p(F,C | Is, Ic), but we can calculate it by conditioning the total joint on 
the probability of the measurments:

jpFCcIsIc@F_, C_, Is_, Ic_D := jpFCIsIc@F, C, Is, Ic D ê jpIsIc@Is, IcD

TableForm@
jpFCcIsIcTable = Table@jpFCcIsIc@F, C, 1, 1 D, 8F, 1, 2<, 8C, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<, 8"C=r", "C=g"<<D
Max@jpFCcIsIcTableD
argmax@jpFCcIsIcTableD

C=r C=g
F=a 55ÅÅÅÅÅÅÅÅÅ

157
308ÅÅÅÅÅÅÅÅÅÅÅÅ
1413

F=t 60ÅÅÅÅÅÅÅÅÅ
157

70ÅÅÅÅÅÅÅÅÅÅÅÅ
1413

60
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
157

H 2 1 L
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‡ Pick most probable color--Answer "red"

In this case, we want maximize the posterior:

p(C | Is, Ic)=⁄F=1
2 pHF, C » Is, IcL

pC@C_, Is_, Ic_D := ‚
F=1

2

 jpFCcIsIc@F, C, Is, Ic D

TableForm@pCTable = Table@pC@C, 1, 1 D, 8C, 1, 2<D,
TableHeadings -> 88"C=r", "C=g"<<D
Max@pCTableD
argmax@pCTableD

C=r 115ÅÅÅÅÅÅÅÅÅ
157

C=g 42ÅÅÅÅÅÅÅÅÅ
157

115
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
157

H 1 L

Answer is that the most probable material color is C = r, "red".

‡ Pick most probable fruit--Answer "apple"

p(F | Is, Ic)

pF@F_, Is_, Ic_D := ‚
C=1

2

 jpFCcIsIc@F, C, Is, Ic D
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TableForm@pFTable = Table@pF@F, 1, 1 D, 8F, 1, 2<D,
TableHeadings -> 88"F=a", "F=t"<<D
Max@pFTableD
argmax@pFTableD

F=a 803ÅÅÅÅÅÅÅÅÅÅÅÅ
1413

F=t 610ÅÅÅÅÅÅÅÅÅÅÅÅ
1413

803
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1413

H 1 L

The answer is "apple"

‡ Moral of the story: Optimal inference depends on the precise definition of the task

Exercises

MAP minimizes probability of error: Proof for detection

Here is why MAP minimizes average error. Suppose that x is fixed at a value for which P (S =sb |x )>P (S =sd |x ). This is 
exactly like the problem of guessing “heads ”or “tails ” for a biased coin, say with a probability of heads P (S =sb|x ). 
Imagine the light discrimination experiment repeated many times and you have to decide whether the switch was set to 
bright or not –but only on those trials for which you measured exactly x .The optimal strategy is to always say “bright ”. 
Let's see why. First note that:

p(error|x) = p(say "bright", actually dim |x) + p(say "dim", actually bright |x) =

p(s1
`

, s2 | x)+p(s1, s2
`

 | x)

Given x, the response is independent of the actual signal state (see graphical model for detection above--"response is 
conditionally independent of signal state, given observation x"), so the joint probabilities factor:

p(error|x) = p(say "bright" |x)p(actually dim |x) + p(say "dim" |x)p(actually bright |x)

Let t= p(say "bright" |x), then

p(error|t,x) = t*p(actually dim |x) + (1-t)*p(actually bright |x).

p(error|t), as a function of t, defines a straight line with slope p(actually dim |x)-p(actually bright |x). (Just take the 
partial derivative with respect to t.) We've assumed P (S =sb |x )>P (S =s d |x )), so p(error|t) has a negative slope, with the 
smallest non-negative value of t being one. So, error is minimized when t=p(say "bright" |x)=1. I.e. Always say "bright". 
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Given x, the response is independent of the actual signal state (see graphical model for detection above--"response is 
conditionally independent of signal state, given observation x"), so the joint probabilities factor:

p(error|x) = p(say "bright" |x)p(actually dim |x) + p(say "dim" |x)p(actually bright |x)

Let t= p(say "bright" |x), then

p(error|t,x) = t*p(actually dim |x) + (1-t)*p(actually bright |x).

p(error|t), as a function of t, defines a straight line with slope p(actually dim |x)-p(actually bright |x). (Just take the 
partial derivative with respect to t.) We've assumed P (S =sb |x )>P (S =s d |x )), so p(error|t) has a negative slope, with the 
smallest non-negative value of t being one. So, error is minimized when t=p(say "bright" |x)=1. I.e. Always say "bright". 

Always saying "bright" results in a probability of error P (error |x )=P (S =sd |x ).That’s the best that can be done on aver-
age. On the other hand, if the observation is in a region for which P (S =sd|x )>P (S =sb |x ),the minimum error strategy is to 
always pick “dim” with a resulting P (error |x )=P (S =sb |x ).Of course, x isn’t fixed from trial to trial, so we calculate the 
total probability of error which is determined by the specific values where signal states and decisions don ’t agree:

p(error)=⁄i≠ j pHsi
` , sjL 

=⁄i≠ jŸ pHsi
` , sj » xL pHxL „ x=⁄i≠ jŸ pHsi

` » xL pHsj » xL pHxL „ x
Because the MAP rule ensures that pHsi

` , s j » xL is the minimum for each x, the integral over all x minimizes the total probabil-
ity of error.

Exercise: Show that MAP minimizes the probability of error for classification

p(error)=⁄i≠ j pHsi
` , sjL 

=⁄i≠ jŸ pHsi
` , sj » xL pHxL „ x=⁄i≠ jŸ pHsi

` » xL pHsj » xL pHxL „ x
Let s

^*
 be the MAP choice, and the error using the MAP choice is,

p(error*)=‚
i≠ j

pJsi
^*, sjN 

=⁄i≠ jŸ pJsi
^*, s j » xN pHxL „ x=⁄i≠ jŸ pJsi

^* À xN pHs j » xL pHxL „ x

We want to show that: p(error)-p(error*)≥0

Exercise: Show that MAP minimizes the probability of error for estimation

Show that R(d;x) is the average error rate for observation x,over all s.Then show that the risk R(a) is the expected number 
of errors over all x,when using the decision rule a(x).
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Appendices

Marginalization and conditioning: A small dimensional example using list manipulation 
in Mathematica 

‡ A discrete joint probability

All of our knowledge regarding the signal discrimination problem can be described in terms of the joint probability of the 
hypotheses, H and the possible data measurements, x. The probability function assigns a number to all possible 
combinations:

p[H, x]

That is, we are assuming that both the hypotheses and the data are discrete random variables.

H = 9 S1
S2

x e 81, 2, ...<
Let's assume that x can only take on one of three values, 1, 2, or 3. And suppose the joint probability is:

p = 99 1
ÅÅÅÅÅÅÅ
12

,
1

ÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅ
6
=, 9 1

ÅÅÅÅ
3
,

1
ÅÅÅÅ
6
,

1
ÅÅÅÅ
6
==

i

k
jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y

{
zzzzzzz

TableForm@p, TableHeadings -> 88"H=S1", "H=S2"<, 8"x=1", "x=2", "x=3"<<D

x=1 x=2 x=3
H=S1 1ÅÅÅÅÅÅÅ

12
1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

H=S2 1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

The total probability should sum up to one. Let's test to make sure. We first turn the list of lists into a singel list of scalars 
using Flatten[]. And then we can sum either with Apply[Plus,Flatten[p]].
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Plus @@ Flatten[p]

1

We can pull out the first row of p like this:

p@@1DD

9 1
ÅÅÅÅÅÅÅÅÅ
12

,
1

ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
6
=

Is this the probability of x? No. For a start, the numbers don't sum to one. But we can get it through the two processes of 
marginalization and conditioning.

‡ Marginalizing

What are the probabilities of the data, p(x)? To find out, we use the sum rule to sum over the columns:

px = Apply@Plus, pD

9 5
ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
4

,
1
ÅÅÅÅÅ
3
=

"Summing over "is also called marginalization or "integrating out".  Note that marginalization turns a probability 
function with higher degrees of freedom into one of lower degrees of freedom. 

What are the prior probabilities? p(H)? To find out, we sum over the rows:

pH = Apply@Plus, Transpose@pDD

9 1
ÅÅÅÅÅ
3

,
2
ÅÅÅÅÅ
3
=

‡ Conditioning

Now that we have the marginals, we can get use the product rule to obtain the conditional probability through conditioning 
of the joint:

(9)p@ x » HD =
p@H , xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p@HD

In the Exercises, you can see how to use Mathematica to do the division for conditioning. The syntax is simple:
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pxH = p ê pH

i
k
jjjjjjj

1ÅÅÅÅ
4

1ÅÅÅÅ
4

1ÅÅÅÅ
2

1ÅÅÅÅ
2

1ÅÅÅÅ
4

1ÅÅÅÅ
4

y
{
zzzzzzz

Note that the probability of x conditional on H sums up to 1 over x, i.e. each row adds up to 1. But, the columns do not. 
p[x|H] is a probability function of x, but a likelihood function of H. The posterior probability is obtained by conditioning 
on x:

(10)p@ H » xD =
p@H , xD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p@xD

Syntax here is a bit more complicated, because the number of columns of px don't match the number of rows of p. We use 
Transpose[] to exchange the columns and rows of p before dividing, and then use Transpose again to get back the 2x3 form:

pHx = Transpose@Transpose@pD ê pxD

i
k
jjjjjjj

1ÅÅÅÅ
5

1ÅÅÅÅ
3

1ÅÅÅÅ
2

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1ÅÅÅÅ
2

y
{
zzzzzzz

Plotting the joint

The following BarChart[] graphics function requires in add-in package (<< Graphics`Graphics`), which is specified at the 
top of the notebook. You could also use ListDensityPlot[].

BarChart@p@@1DD, p@@2DDD;

Using Mathematica lists to manipulate discrete priors, likelihoods, and posteriors

‡ A note on list arithmetic

We haven't done standard matrix/vector operations above to do conditioning. We've take advantage of how  Mathematica 
divides a 2x3 array by a 2-element vector:
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M=Array[m,{2,3}]
X = Array[x,{2}]

J mH1, 1L mH1, 2L mH1, 3L
mH2, 1L mH2, 2L mH2, 3L N

8xH1L, xH2L<

M/X

i

k
jjjjjjj

mH1,1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH1,2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH1,3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH1L

mH2,1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

mH2,2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

mH2,3LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xH2L

y

{
zzzzzzz

‡ Putting the probabilities back together again to get the joint

Transpose@Transpose@pHxD pxD

i
k
jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y
{
zzzzzzz

pxH pH

i
k
jjjjjjj

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅÅÅÅ
12

1ÅÅÅÅ
6

1ÅÅÅÅ
3

1ÅÅÅÅ
6

1ÅÅÅÅ
6

y
{
zzzzzzz

‡ Getting the posterior from the priors and likelihoods:

One reason Bayes' theorem is so useful is that it is often easier to formulate the likelihoods (e.g. from a causal or generative-
model of how the data could have occurred), and the priors (often from heuristics, or in computational vision empirically 
testable models of the external visual world). So let's use Mathematica to derive p(H|x) from p(x|H) and p(H) , (i.e. pHx 
from pxH and pH ).

px2 = Plus üü HpxH pHL

9 5
ÅÅÅÅÅÅÅÅÅ
12

,
1
ÅÅÅÅÅ
4

,
1
ÅÅÅÅÅ
3
=
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Transpose@Transpose@HpxH pHLD ê Plus üü HpxH pHLD

i
k
jjjjjjj

1ÅÅÅÅ
5

1ÅÅÅÅ
3

1ÅÅÅÅ
2

4ÅÅÅÅ
5

2ÅÅÅÅ
3

1ÅÅÅÅ
2

y
{
zzzzzzz

‡ Show that this joint probability has a uniform prior (i.e. both priors equal). 

p = 881 ê 8, 1 ê 8, 1 ê 4<, 81 ê 4, 1 ê 8, 1 ê 8<<

i

k
jjjjjjj

1ÅÅÅÅ
8

1ÅÅÅÅ
8

1ÅÅÅÅ
4

1ÅÅÅÅ
4

1ÅÅÅÅ
8

1ÅÅÅÅ
8

y

{
zzzzzzz

Figure code

x = 0.2; y = 0.8;
Plot@t x + H1 - tL y, 8t, 0, 1<, AxesLabel Ø 8t, "pHerror"<D;

0.2 0.4 0.6 0.8 1 t
0.3
0.4
0.5
0.6
0.7
0.8
pHerror
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