
Computational Vision
U. Minn. Psy 5036
Daniel Kersten
Lecture 23: Overview of high-level visual tasks. Object Recognition

Initialize

‡ Spell check off

Off@General::spell1D;

<< "Graphics`Polyhedra`"
<< Graphics`Graphics3D`
<< Graphics`MultipleListPlot`

Outline

Last time

Perception as "puzzle solving"--cooperative computation of scene attributes given image cues

Today

Tasks

Object recognition

Role of geometric modeling in theories of object recognition



High-level vision, visual tasks

Intermediate-level vision

Generic, global organizational processes

Domain overlap, occlusion

Surface grouping, selection

Gestalt principles

Cue integration

Cooperative computation

Attention

High-level vision

Functional tasks

Object recognition

entry-level, subordinate-level

Object-object relations

Scene recognition

Spatial layout

Viewer-object relations

Object manipulation

reach & grasp

Heading

Task dependency: explicit (primary) and generic (secondary, nuisance) variables

I=f(shape, material, articulation,viewpoint,relative position, illumination)
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‡ Task: Object Recognition

‡ Task: Absolute depth (e.g. for reaching)
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‡ Task: grasp

Problem: all the scene variables contribute to the variations in the image

Bayes framework for high-level vision

Task specifies what scene variables to integrate out:

Bayes’ rule factors posterior probability into likelihood and prior terms:

‡ Preview of Mathematica application below

 Shape-based object recognition

estimate geometrical shape (primary variables)

discount sources of image variation not having to do with shape (secondary variables)

e.g. integrating out geometrical variables such as translation, rotation, and scale to estimate shape for object 
recognition
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Object recognition

Sources of image variation

We'll work from lower to higher levels of object abstraction

‡ Variation within subordinate-level category 

(subordinate level, e.g. mallard, Doberman, Braeburn)

illumination

level, direction, source arrangement, shadows,spectral content

view

scale

translation

2D & 3D rotation

articulation

non-rigid, 

e.g. joints, hinges, facial expression, hair, cloth

background (segmentation)

bounding contour/edge variation

occlusion (segmentation)

‡ Variation within basic-level category 

(e.g. duck, dog, chair, apple)

"entry-level", "basic-level"

structural relation invariance?

‡ Variation across  super-ordinate category 

(e.g.bird, mammal, furniture, fruit )

more cognitive than perceptual, non-pictorial
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‡ Variation across context

ball on tennis court vs. billiard table

Basic-level vs. subordinate-level

Psychological (Rosch et al.), 

Neuropsychological (Damasio and Damasio)

temporal lobe lesions disrupt object recognition

fine-grain distinctions more easily disrupted than coarse-grain ones

e.g. Boswell patient—can't recognize faces of family, friends, unique objects, or unique places. Can assign 
names like face, house, car, appropriately. 

Also superordinate categories: "tool"

prosopagnosics

faces vs. subordinate-level?

neural evidence for distinction? IT hypercolumns?

‡ Basic-level

Shape-particularly critical -- but qualitative, rather than metric aspects important. 

E.g. geons and geon relations (Biederman).

Material, perhaps for some natural classes?

Issue of prototypes with a model for variation vs. parts.

e.g. average image face, the most familiar

priming

‡ Subordinate-level

geometric variations important for subordinate--e.g. sensitivity to configurational etc..

material 

Prototypes -> what kind of model for variation?

Problem: With only a discrete set of views, how does vision generalize to other views?
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Consider viewpoint

Features invariant to viewpoint change?

Material (surface color, texture)

2D image features correlated with 3D Shape

Object ensemble is important

E.g only red object amidst others – no need to process its shape 

Context is important

Small red thing flying past the window.

High "cue validity" for Cardinal

Overview of processes that seem to be necessary -- i.e. what we think we know
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Getting a good image representation

For object recognition, the contributions due to the secondary or "generic variables", (e.g. illumination and viewpoint) 
need to be discounted, and object features such as shape and material need to be estimated. How?

o Measurements of image information likely to belong to the object. This principle should constrain segmentation.

problems with: specularities, cast shadows, attached shadows (from shading). 

edge detection is really noisy, so what are these image "features"?

maybe although noisy, edges are sufficiently reliable to determine object class?

o "Sensor fusion" or cue integration to improve estimates of where object boundaries are located:

combine stereo, motion, chromatic, luminance, etc..

o Incorporate intermediate-level constraints to help to find object boundaries or "silhouettes". 

Gestalt principles of perceptual organization

Mohan (1988);  Zhu (1999); Geiger – figure/ground talk

symmetry (Vetter et al., 1994)

long smooth lines (David & Zucker,  1989l; Shashua & Ullman, 1988; Field and Hess, 1993)

o  "Cooperative computation" for object shape, reflectance and lighting.

There is no single local cue to edge identity

"intrinsic images" of Barrow and Tenenbaum to extract

Clark & Yuille (1990); Knill &Kersten, Kersten (1991); Kersten and Madarasmi (1995). 

Problem: Still no bottom-up procedure for perfect segmentation or edge-parsing.

Solutions?: Domain-specific processing; class-specific recognition.

Classification -> edge detection. E.g dalmation dog demonstration
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Storing, matching information about objects

How does the brain store information about 3D objects?

Structural description: high-level features or parts plus relations

Image-based: low-level features plus transformations?

2D views?

3D object-centered?

Given a representation of the image information likely to be due to 3D object in memory, how does the brain store, then 
later when given another view, index and verify?

Nearest neighbor to 2D views?

Transformation of 3D model to fit 2D view?

Or something in between?

Two broad classes of models for object recognition

View independent, structural description

Structural description theories. Use invariants to find parts (assumption is that  this is easier than for the whole object), 
build up description of the relations between the parts, this description specifies the object. E.g. a triangle shape, the letter 
"A" (three parts, with two "cross relations" and one " cotermination" relation".

(Could be based on 2.5 D sketch => object-centered representation that is independent of viewpoint? e.g. Marr's general-
ized cylinders)

predicts view-point independence

(Biederman, 1987) extraction of invariants, "non-accidental properties", such as:

co-linearity of points or lines => colinearity in 3D

cotermination of lines=>cotermination in 3D (e.g. Y and arrow vertices)

skewed symmetry in 2d=>symmetry in 3D

curved line in 2D =>curved line in 3D

parallel curves in 2D => parallel in 3D (over small regions)

=> geons (box, cylinder, wedge, truncated cone, etc..)

partial independence of viewpoint
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View dependent, alignment methods 

E.g. Ullman, alignment of pictorial descriptions

Selection

Segmentation

Image description

-Alignment

-Matching

TEST: S = F(M)?

->Image-based or "Exemplar" theories

view-specific features are stored in memory

predicts view-point dependence (e.g. Rock & DiVita (1987)

Poggio & Edelman, 1990; Bülthoff & Edelman, 1992; 

Tarr & Bülthoff, 1995; Liu, Knill & Kersten (1995)

Troje & Kersten (1999)

Model may depend on object class and task?

How sophisticated are the transformation processes in human recognition?

(Liu, Knill & Kersten, 1995; Liu & Kersten, 1998)

Ideal observer analysis applied to the problem of view-dependency in 3D object recognition

One can imagine two quite different ways of verifying whether an unfamiliar view of an object belongs to the object or 
not. One way is to simply test how close the new view is to the set of stored views, without any kind of "intelligent" 
combination of the stored views. Another way is to combine the stored views in a way that reflects knowledge that they are 
from a 3D object, and compare the new view to the combined view. The second approach has the potential for greater 
accuracy than the first. An example of the second approach would be to use the familiar views to interpolate the unfamiliar 
views. Given sufficient views and feature points, this latter approach has a simple mathematical realization (Ullman, 
1996). An optimal verification algorithm would verify by rotating the actual 3D model of the object, projecting it to 2D 
and testing for an image match.

Liu et al. (1995) were able to exclude models of the first class in a simple 3D classification task using ideal observer 
analysis. The ideal observer technique was developed in the context of our studies of quantum efficiency in early vision.
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Review of types of image modeling (from Lecture 7)

Generative models for images: rationale

‡ Characterize the knowledge required for inference

Feedforward procedures:

Pattern theory perspective: "analysis by synthesis"--synthesis phase explicitly incorporates generative model
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‡ Easier to characterize information flow: Mapping is is many-to-one

‡ Provides tools to specify the independent variables in psychophysics, and vision models

‡ Two basic concepts: Photometric & geometric variation

‡ Two more basic concepts: 3D scene-based & 2D image-based models of geometric variation

Scene-based modeling: Computer graphics models

‡ Scenes, Variable classes : extended surfaces, solid objects, diffuse "stuff"/particles, lights, and camera 

(eye).

‡ Objects & surfaces: Shape, Articulations, Material & texture

‡ Illumination: Points and extended, Ray-tracing, Radiosity

‡ Viewpoint/Camera

Projection geometry, homogeneous coordinates:

perspective, orthographic
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Image-based modeling

‡ Linear intensity-based

Basis sets:

I = m1*I1 + m2*I2 + m3*I3 + ...

application: optics of the eye

application: illumination variation for fixed views of an object, useful in object recognition

‡ Non-linear intensity-based

e.g. Contrast normalization

‡ Linear geometry-based

Affine:

rigid translations, rotations, scale and shear

Application: viewpoint variation

‡ Non-linear geometry-based

Morphs

Application:within-category variation for an object,or objects

finding the "average" face

Applications of small-scale geometry

Object geometry--Surfaces & shape, small scale surface structure

How can we describe objects themselves in terms of their geometry? 

What is the relationship of parts of objects to each other? 

Extrinsic vs. intrinsic geometrical descriptions

Role in object recognition
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Applications of large scale geometry

Scene geometry--Spatial layout, large-scale surface structure

Where are objects relative to the viewer? 

Where are they relative to each other? 

Role in spatial layout, structure from motion, and heading-> in final lecture

Modeling geometric variation: 3D scene-based modeling

Rotations

<< Geometry`Rotations`

A rotation specified by the Euler angles psi, theta, and phi can be decomposed into a sequence of three successive rota-
tions: first by angle psi about the z axis, the second by angle theta about the x axis, and the third about the z axis (again) by 
angle phi. The angle theta is restricted to the range 0 to p. (See Mathematica Help menu) 

RotationMatrix3D@y, q, fD êê MatrixForm

i

k
jjjjjjj

cosHfL cosHyL - cosHqL sinHfL sinHyL cosHqL cosHyL sinHfL + cosHfL sinHyL sinHqL sinHfL
-cosHyL sinHfL - cosHqL cosHfL sinHyL cosHqL cosHfL cosHyL - sinHfL sinHyL cosHfL sinHqL
sinHqL sinHyL -cosHyL sinHqL cosHqL

y

{
zzzzzzz

RotationMatrix3D@y, 0, 0D êê MatrixForm

i

k
jjjjjjj

cosHyL sinHyL 0
-sinHyL cosHyL 0
0 0 1

y

{
zzzzzzz
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RotationMatrix3D@0, q, 0D êê MatrixForm

i

k
jjjjjjj

1 0 0
0 cosHqL sinHqL
0 -sinHqL cosHqL

y

{
zzzzzzz

RotationMatrix3D@0, 0, fD êê MatrixForm

i

k
jjjjjjj

cosHfL sinHfL 0
-sinHfL cosHfL 0
0 0 1

y

{
zzzzzzz

Homogeneous coordinates

Rotation and scaling can be done by linear matrix operations in three-space. Translation and perspective transformations 
do not have a three dimensional matrix representation. By going from three dimensions to four dimensional homogeneous 
coordinates, all four of the above basic operations can be represented within the formalism of matrix multiplication. 

Homogeneous coordinates are defined by: {xw,   yw,   zw,  w }, (w not equal to 0). To get from homogeneous coordinates 
to three-space coordinates, {x,y,z}, divide the first three homogeneous coordinates by the fourth, {w}. For more informa-
tion, see:  Foley, J., van Dam, A., Feiner, S., & Hughes, J. (1990). {Computer Graphics Principles and Practice}, (2nd ed.). 
Reading, Massachusetts: Addison-Wesley Publishing Company.

The rotation and translation matrices can be used to describe object or eye-point changes of position.  The scaling matrix 
allows you to squash or expand objects in any of the three directions. Any combination of the matrices can be multiplied 
together or concatenated. But remember, matrices do not in general commute, so the order is important. The translation, 
rotation, and perspective transformation matrices can be concatenated to describe  general 3-D to 2-D perspective 
mappings.

‡ Translation by {d_x, d_y, d_z} can be found by applying the matrix

to {x,y,z,1}
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‡ The scaling matrix is:

‡ There are three matrices for general rotation:

z-axis (moving the positive x-axis towards the positive y-axis)

x-axis (moving the positive y towards the positive z)

y-axis (moving positive z towards positive x):
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‡ Perspective

Perspective transformation is the only one that requires extracting the three-space coordinates by dividing the homoge-
neous coordinates by the fourth component w.  The projection plane is the x-y plane, and the focal point is at z = d.  Then  
{x,  y,   z,  1 }  maps onto  {x, y, 0,  -z/d} + 1 } by the following transformation:

After normalization, the image coordinates {x',y',z'} are read from:

The matrix for orthographic projection has d-> infinity. 

The perspective transformation is the only singular matrix in the above group.This means that, unlike the others its opera-
tion is not invertible. Given the image coordinates, the original scene points cannot be determined uniquely.

Packages--homogeneous.m

Homogeneous.m

<<"Geometry`Homogeneous`"

<<"Graphics`Polyhedra`"

<<Graphics`Graphics3D`

<<Graphics`MultipleListPlot`

BeginPackage@"Geometry`Homogeneous`"D
XRotationMatrix::"usage" =
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"XRotationMatrix@phiD gives the matrix for rotation about x-
axis by phi degrees in radians"

YRotationMatrix::"usage" =
"YRotationMatrix@phiD gives the matrix for rotation about y-

axis by phi degrees in radians"
ZRotationMatrix::"usage" =
"ZRotationMatrix@phiD gives the matrix for rotation about z-

axis by phi degrees in radians"
ScaleMatrix::"usage" =
"ScaleMatrix@sx,sy,szD gives the matrix to scale a vector by

sx,sy, and sz in the x, y and z directions, respectively."
TranslateMatrix::"usage" =
"TranslateMatrix@x,y,zD gives the matrix to translate coordinates

by x,y,z."
ThreeDToHomogeneous::"usage" =
"ThreeDToHomogeneous@sx,sy,szD converts 3D coordinates to 4D

homogeneous coordinates."
HomogeneousToThreeD::"usage" =
"HomogeneousToThreeD@4DvectorD converts 4D homogeneous coordinates

to 3D coordinates."
ZProjectMatrix::"usage" =
"ZProjectMatrix@focalD gives the 4x4 projection matrix to map

a vector through the origin to an image plane at focal
distance from the origin along the z-axis."

ZOrthographic::"usage" =
"ZOrthographic@vectorD projects vector on to the x-y plane."
Begin@"`private`"D
XRotationMatrix@theta_D :=

881, 0, 0, 0<, 80, Cos@thetaD, -Sin@thetaD, 0<,
80, Sin@thetaD, Cos@thetaD, 0<, 80, 0, 0, 1<<;

YRotationMatrix@theta_D :=
88Cos@thetaD, 0, Sin@thetaD, 0<, 80, 1, 0, 0<,
8-Sin@thetaD, 0, Cos@thetaD, 0<, 80, 0, 0, 1<<;

ZRotationMatrix@theta_D :=
88Cos@thetaD, -Sin@thetaD, 0, 0<, 8Sin@thetaD, Cos@thetaD, 0, 0<,
80, 0, 1, 0<, 80, 0, 0, 1<<;

ScaleMatrix@sx_, sy_, sz_D :=
88sx, 0, 0, 0<, 80, sy, 0, 0<, 80, 0, sz, 0<, 80, 0, 0, 1<<;

TranslateMatrix@x_, y_, z_D :=
881, 0, 0, x<, 80, 1, 0, y<, 80, 0, 1, z<, 80, 0, 0, 1<<;

ThreeDToHomogeneous@vec_D := Append@vec, 1D;
HomogeneousToThreeD@vec_D := DropA vec

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
vecP4T , -1E;

ZProjectMatrix@focal_D :=

981, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 90, 0, NA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
focal

E, 0==;
ZOrthographic@vec_D := Take@vec, 2D;
End@D
EndPackage@D
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Geometry`Homogeneous`

XRotationMatrix@phiD gives the matrix for rotation about x-axis by phi degrees in radians

YRotationMatrix@phiD gives the matrix for rotation about y-axis by phi degrees in radians

ZRotationMatrix@phiD gives the matrix for rotation about z-axis by phi degrees in radians

ScaleMatrix@sx,sy,szD gives the matrix to scale
a vector by sx,sy, and sz in the x, y and z directions, respectively.

TranslateMatrix@x,y,zD gives the matrix to translate coordinates by x,y,z.

ThreeDToHomogeneous@sx,sy,szD converts 3D coordinates to 4D homogeneous coordinates.

HomogeneousToThreeD@4DvectorD converts 4D homogeneous coordinates to 3D coordinates.

ZProjectMatrix@focalD gives the 4x4 projection matrix to map a vector
through the origin to an image plane at focal distance from the origin along the z-axis.

ZOrthographic@vectorD projects vector on to the x-y plane.

Geometry`Homogeneous`private`

Geometry`Homogeneous`private`

Example: transforming, projecting a 3D object

orthoproject@x_D := Delete@x, Table@8i, 3<, 8i, 1, Length@xD<DD;

‡ Define 3D target object - Wire with randomly positioned vertices

threeDtemplate = Table@8Random@D, Random@D, Random@D<, 85<D;
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MatrixForm@threeDtemplateD

i

k

jjjjjjjjjjjjjjjjjjj

0.398115 0.183863 0.513307
0.272483 0.21363 0.560933
0.567738 0.686339 0.498648
0.38164 0.94558 0.28734
0.154773 0.18974 0.473253

y

{

zzzzzzzzzzzzzzzzzzz

ScatterPlot3D@threeDtemplate, PlotJoined -> True,
PlotStyle -> 88Thickness@0.02D, RGBColor@1, 0, 0D<<D;

0.20.3
0.4

0.5

0.2

0.4

0.6
0.8

0.3
0.4
0.5

0.20.3
0.4

0.5

0.2

0.4

0.6
0.8
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‡ First view

‡ View from along Z-direction

ScatterPlot3D@threeDtemplate, ViewPoint -> 80, 0, 100<,
PlotJoined -> True, PlotStyle -> 88Thickness@0.02D, RGBColor@1, 0, 0D<<,
PlotRange -> 88-.5, 1.5<, 8-.5, 1.5<, 8-.5, 1.5<<D;

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

-0.500.511.5-0.5

0

0.5

1

1.5

‡ ListPlot view

ovg = ListPlot@orthoproject@threeDtemplateD, PlotJoined -> True,
PlotStyle -> 8Thickness@0.02D, RGBColor@1, 0, 0D<,
PlotRange -> 88-.5, 1.5<, 8-.5, 1.5<<D;

-0.5-0.25 0.250.50.75 1 1.251.5

-0.5
-0.25

0.25
0.5

0.75
1

1.25
1.5
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‡ New View

‡ Use Homogeneous coordinates

swidth = 1.0; sheight = 1.0; slength = 1.0; d = 0;

homovertices = Transpose@Map@ThreeDToHomogeneous, threeDtemplateDD;
newtransformMatrix = TranslateMatrix@1, 0, 0D.XRotationMatrixANA p

ÅÅÅÅ
4
EE.

YRotationMatrixANA- p
ÅÅÅÅ
2
EE.ScaleMatrix@swidth, sheight, slengthD;

temp = N@newtransformMatrix.homoverticesD;

‡ Take a look at the new view

newvertices = Map@HomogeneousToThreeD, Transpose@tempDD;

ScatterPlot3D@newvertices, ViewPoint -> 80, 0, 100<, PlotJoined -> True,
PlotStyle -> 88Thickness@0.02D, RGBColor@0, 0, 1D<<,
PlotRange -> 88-.5, 2.5<, 8-.5, 1.5<, 8-.5, 1.5<<D;

0 1 2
-0.5

0

0.5

1

1.5

-0.500.511.5
-0.5

0

0.5

1

1.5
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‡ Exercise: look at new view by coding the orthographic projection yourself

Modeling geometric variation: image-based modeling as an 
approximation to scene-based variation

If one projects a rotation in 3D onto a 2D view, the rotation can be approximated by a 2D affine transformation. Because a 
2D affine transformation is a simple 2D operation, perhaps it is sufficient to account for the generalization of familiar to 
unfamiliar views.

Affine transformation preserve parallel lines. 

We know that rotations, scale and shear transformations will preserve parallel lines. So will translations. It is not immedi-
ately apparent, that any matrix operation is an affine transformation, although one has to remember that translations are not 
represented by matrix operations unless one goes to homogeneous coordinates. Here is a simple demo of the parallel line 
preservation for transformations of a cube.

‡ Rotate square

M@theta_D := 88Cos@thetaD, Sin@thetaD<, 8-Sin@thetaD, Cos@thetaD<<;

square = 881, 1<, 8-1, 1<, 8-1, -1<, 81, -1<<;

Show@Graphics@Polygon@squareDD, AspectRatio Ø 1,
PlotRange Ø 88-2, 2<, 8-2, 2<<D;
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ShowAGraphicsAPolygonAJMA p
ÅÅÅÅ
4
E.#1 &N êü squareEE, AspectRatio Ø 1,

PlotRange Ø 88-2, 2<, 8-2, 2<<E;

‡ Random matrix operation on square

MR = Table@Random@D, 82<, 82<D
Show@Graphics@Polygon@HMR.#1 &L êü squareDD, AspectRatio Ø 1,
PlotRange Ø 88-2, 2<, 8-2, 2<<D

i
k
jj 0.130709 0.129477

0.674555 0.0784184
y
{
zz

Ü Graphics Ü
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Compute closest least squares  affine match with translation

aff = 88a, b<, 8c, d<<;
tra = Transpose@88f, g<, 8f, g<, 8f, g<, 8f, g<, 8f, g<<D;
errorsum :=

Apply@Plus,
Flatten@
Haff.Transpose@orthoproject@newverticesDD + tra -

Transpose@orthoproject@threeDtemplateDDL^2DD;
temp = FindMinimum@errorsum, 8a, .8<, 8b, .2<, 8c, .16<, 8d, .8<,

8f, 0.0<, 8g, 0.0<, MaxIterations -> 200D;
minvals = Take@temp, -1D@@1DD; minerr = Take@temp, 1D@@1DD;
naff = aff ê. minvals; ntra = tra ê. minvals;
minerr

0.272389

Check match with estimated view

estim = naff.Transpose@orthoproject@newverticesDD + ntra;
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‡ Plot first original view, new view and the affine estimate of the first from the new

evg = MultipleListPlot@orthoproject@threeDtemplateD, Transpose@estimD,
orthoproject@newverticesD, PlotJoined -> True,
PlotStyle -> 88Thickness@0.002D, RGBColor@1, 0, 0D<,

8Thickness@0.005D, RGBColor@0, .5, 0D<,
8Thickness@0.005D, RGBColor@0, 0, 1D<<,

PlotRange -> 88-.5, 2.5<, 8-.5, 2.5<<D;

-0.5 0.5 1 1.5 2 2.5

-0.5

0.5

1

1.5

2

2.5

Compute closest least squares  affine match without translation

naff2 = Transpose@orthoproject@threeDtemplateDD.
PseudoInverse@Transpose@orthoproject@newverticesDDD

i
k
jjj 0.680998 -0.190259

0.680998 1.22395
y
{
zzz

Check match with estimated view

estim2 = naff2.Transpose@orthoproject@newverticesDD;
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‡ Plot familiar view, new view and the affine estimate of the old from the new

evg = MultipleListPlot@orthoproject@threeDtemplateD, Transpose@estim2D,
orthoproject@newverticesD, PlotJoined -> True,
PlotStyle -> 88Thickness@0.02D, RGBColor@1, 0, 0D<,

8Thickness@0.01D, RGBColor@0, 1, 0D<,
8Thickness@0.01D, RGBColor@0, 0, 1D<<,

PlotRange -> 88-.5, 1.5<, 8-.5, 1.5<<D;
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-0.5

-0.25

0.25

0.5

0.75

1

1.25

1.5

Liu & Kersten (1998) compared human recognition performance with 2D affine observers. The targets were paper-clip like 
objects as above, except thicker with some shading. Human performance was somewhat better than the affine observer, 
suggesting that people can incorporate additional 3D information, perhaps from the shading/occlusion information, 
together with a "smarter" model.
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Appendix: Neuropsychological and neurophysiological studies

Neuropsychological Studies

Category-specific breakdowns

Inferomedial occipito-temporal region, (right hemi), fusiform and lingual gyri--> prosopagnosia. Can recognize other 
objects (even with comparable structural complexity), and can recognize a face as a face, and can name its parts. 

...but is it a problem with individuation in a class? Evidence suggesting prosopagnosics have a problem distinguishing 
fruits, playing cards, autos, etc.. Bird-watcher lost ability. Farmer couldn't identify his cows.

 Damasio's patients could recognize horses, owls, elephants, but had problems with dollar sign, British pound sign, musical 
clef.  --> perhaps a problem with inter-category discriminations (subordinate-level), rather than complexity per se.

Corroboration--patient with car agnosia could still identify ambulance and fire engine (distinct entry point attributes)

BUT, propospagnosia does seem sometimes to occur without any othe subordinate-level deficit. Patients impaired for 
living, but not non-living things.

<<20 questions and recognition>>

Summary: Two types of visual memory:

recognition that involves representing and distinguishing prototypes

<<Different protypes in different IT hypercolumns?>>

recognition that involves distinguishing deviations between members with the same prototype (inferomedial  
occipito-temporal)

<<processing within hypercolumn?>>

Deficits in recognizing facial expressions

Dissociation between face recognition and recognizing facial expressions.

Some proso's can't recognize an individual face, but can recognize the expression.

Damasio reports bilateral amygdala lesion patient could recognize individual faces, but did not do well with expressions of 
happiness, surprise, fear, anger, etc.. Monkeys too (Weiskrantz, 1956)

Metamorphopsia with faces. Another patient experiences metamorphopsia with objects other than faces.

Visuomotor

DF
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Electrophysiological Studies

V1-> V2 -> V4 -> IT-> TEO (PIT) -> TE

not strictly serial

V2, V3, V4 , corpus callosum-> IT

TE, TEO connected to thalamus, hypothalamus,...

Object information might even skip IT and go to limbic structures or striatum...

>abstract categorizations (with high cue validity) perhaps possible even with damage to TE

‡ Physiological properties of IT neurons

Physiological properties of IT neurons

Gross. IT as last exclusive visual area.

Posterior TEO, cells similar to V4, visuotopic, repres. contralateral vis. field, rf.s larger than V4. (small as 1.5 - 2.5 deg)

anterior TE, complex stimuli required. TE not visutopic, large ipsi, contra or bilat. rfs.

30 to 50 deg rfs.

Cells often respond more vigorously to Fovea stimulation 

Shape selectivity (some in V4), lots in IT. natural objects, walsh functions, faces, hands.

Invariance? Rare to find size or position constancy--but selectivity falls off slowly over size and position. Thus in this 
sense roughly 50% of cells show size and position invariance.

Cue invariant--motion, texture or luminance defined shape boundaries. BUT, contrast polarity sensitive. >>shape from 
shading?

Two mechanisms? 1) prototypes of objects that can be decomposed into parts.

parts important.

2) holistic, configurational. Part features not useful for discrimination, but whole is.

‡ Combination encoding

Tanaka & modules for similar shapes, columnar organization. \

>1300 prototype modules?? RBC?

Sufficient for representing an exemplar of a category? Or when holistic information is required?

L&S suggest combination encoding not used for holistic representation. Evidence: Many celss in TE and STS code overall 
shape of biologically important objects--not features or parts. Novel wire objects too.
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‡ Selectivity for biologically important stimuli

Face cells - TEa, TEm, STS, amygdala, inf. convexity of prefrontal cortex.

Some cells like features (e.g. eyes). Other like the whole face, or face-view, or even highly selective for face-gaze angle, 
head direction, and body posture. 

Face cells, invariant over size and position, less so over orientation--upright preferred.

Face identity cells in IT, 

but facial expression, gaze direction , and vantage point in STS

PET, posterior fusiform gyrus for face matching, gender disc.

mid-fusiform for unique face

IT cells for whole human body, mostly viewer centered cells. 20% holistic

‡ Configurational selectivity for novel objects

L et al., and L&S's work. on wires, etc.

ant. medial temporal sulcus

view-selective "blurred templates"

enantiomorphic views undistinguished

many showed broad size tuning

Action-related

MT -> parietal MST, FST, LIP, 7, 

LIP cells sensitive to grasp shape of hand
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