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‡ Spell check off

Off@General::spell1D;

Outline

Last time

Statistical texture models & synthesis, MRFs, Gibbs Sampler

Science writing

Today

Integrating perceptual information

Some basic graph types in vision (from Lecture 6)
See: Kersten, D., & Yuille, A. (2003) and Kersten, Mamassian & Yuille (2004)



‡ Basic Bayes

p@S » ID =
p@I » SD p@SD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

p@ID
Usually, we will be thinking of the Y term as a random variable over the hypothesis space, and X as data. So for visual 
inference, Y = S (the scene), and X = I (the image data), and I = f(S).

We'd like to have:

p(S|I) is the posterior probability of the scene given the image

-- i.e. what you get when you condition the joint by the image data. The posterior is often what we'd like to base our 
decisions on, because as we discuss below,  picking the hypothesis S which maximizes the posterior (i.e. maximum a 
posteriori or MAP estimation) minimizes the average probability of error.

p(S) is the prior probability of the scene.

p(I|S) is the likelihood of the scene. Note this is a probability of I, but not of S.
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We've seen a number of applications of Basic Bayes, including the algorithms for shape from shading and optic flow.

‡ Discounting

This Bayes net describes the case where the joint distribution can be factored as:

pHs1 , s2 , IL = p(I|s1 ,s2)p(s1 )p(s2 )

Optimal inference for this task requires that we calculate the marginal posterior:

p(s1 |I) ∝ ŸS2
 pHs1 , s2 » IL „ s2

Liu, Knill & Kersten (1995) describe an example with:  

I -> 2D x-y image measurements, s1 -> 3D object shape, and s2 -> view

Bloj et al. (1999) have an example estimating  s1 -> surface chroma (saturation) with  s2 -> illuminant direction.

In this lecture, we describe two more simple graphs.
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‡ Cue integration

‡ Perceptual explaining away

Cue integration

‡ Strong vs. weak fusion

Clark & Yuille, Landy & Maloney, Knill & Kersten, Schrater & Kersten.

This Bayes net describes the factorization:

p(S,I1,I2) = p(I1|S)p(I2|S)p(S)

We'll change notation, and let x1  and x2  be image measurements or cues. The simple Bayes net shown above describes the 
case where the two cues are conditionally independent. In other words, p(x1,x2|s) = p(x1|s)p(x2|s).

Let's consider the simple Gaussian case where xi = mcue i + ni . We'll show that optimal combined cue estimate is a 
weighted average of the cues. 

p(s|x1,x2)=p(x1,x2|s)p(s)/p(x1,x2) ∝ p(x1|s)p(x2|s) =e-Hx1 -sL2 ë2 s1
2 e-Hx2 -sL2 ë2 s2

2

PowerExpandALogAE-Hx1 -mL2 ëI2 s1
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-
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In general, one can show that the combined estimate is the weighted sum of the separate estimates,
where the weights wi are determined by the relative reliabilities :

mcombined
` = mcue1

`  w1 + mcue2
`  w2 = mcue1

`  
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Perceptual explaining away, Cooperative computation 

Modular vs. cooperative computation

Kenneth Craik at Cambridge University in the 1940's (1943) had suggested that perception was analogous to an 
engineer's construction of model of a ship. It was like the real thing with respect to tests it was subjected to, but left out the 
inessential details.  

 The central theme of this course is that a major challenge of vision research is to understand how the brain con-
structs a model of  the visual environment from the  pattern of changing retinal light intensities.  A brightness change in 
our eyes is translated to an impression of transparency, shadow, depth, or shape with no apparent effort.  

A primary result of computational analysis is that scene reconstruction from image data is often underconstrained-
-there are many solutions that satisfy the data. Prior constraints then have to be sought to find a unique interpretation of the 
environment from the image intensities. Regularization theory is one way of modeling the interaction of data, and prior 
constraints. Bayesian theory takes us step further by showing the importance of marginalization in dealing with secondary 
variables as a means to reduce ambiguity in the primary variables. 

So far, we've primarily studied modular theories of visual estimation, such as,  surface-color-from-radiance (Land, 
1959), shape-from-shading (Horn, 1975), optic flow (Hildreth, 1983) or structure-from-motion (Ullman, 1979).

But the assumption of modularity depends on the task (Schrater and Kersten, ). Further, if there are several classes 
of primary variables, then they all should be estimated in such a way that they are consistent with the image data. Can one 
relax prior assumptions, about specific domains, without losing uniqueness? The answer pursued here is to go beyond 
simple modularity, and look at how interacting modules or representations of the scene determine image information.

In contrast to the  modularity theories of vision, it is phenomenally apparent that visual information  is eventually 
integrated to provide a strikingly singular description of the  visual environment.  Visual ambiguity is the exception, rather 
than the rule. By looking at how human perception puts integrates scene attributes, we may get some idea of how vision 
modules in the brain interact, and what they represent.

Cooperative computation: multiple estimations of scene attributes, the estimates of which satisfy an internal model of 
consistency

‡ Perception as puzzle solving

Rock, I. (1983). The Logic of Perception. Cambridge, Massachusetts: M.I.T. Press.
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‡ Perceptual explaining away

Both causes S1 and S2 can be primary variables.

The above Bayes net describes the factorization:

p(S1,S2,I) = p(I|S2,S2) p(S1)p(S2)

If we average over I, S1 and S2 are independent. However, knowledge of I makes S1 and S2 conditionally dependent. The 
two causes S1 and S2 can behave like competing hypotheses to explain the data I.

In general, “explaining away” is a phenomenon that occurs in probabilistic belief networks in which two (or more) vari-
ables influence a third variable whose value can be measured  (Pearl, 1988). Once measured, it provides evidence to infer 
the values of the influencing variables. 

Imagine two coins that can be flipped independently, and the results (heads or tails) have an influence on a third variable.  
For concreteness, assume the third variable’s value is 1 if both coins agree, and 0 if not (NOT-XOR). If we are ignorant of 
the value of the third variable, knowledge of one influencing variable doesn't help to guess the value of the other—the two 
coin variables are independent. (This is called marginal independence, “marginal” with respect to the third variable.) 

But if the value of the third variable  is measured (suppose it is 1), the two coin variables become coupled, and they are 
said to be conditionally dependent. Now knowing that one coin is heads guarantees that the other one is too. 

The phrase “explaining away” arises because coupling of variables through shared evidence arises often in human reason-
ing, when the influences can be viewed as competing causes. Suppose that the evidence is 0. If our interpretation is that 
“heads” in either coin can cause such a “suppression” of the NOT-XOR output, then which coin did the suppressing?  One 
of the coins is heads and one tails, but not both. Any auxiliary evidence that tips the balance toward one coin being “to 
blame”, reduces our belief that the other caused the observed 0. The other coin’s possible influence is explained away by 
the new evidence supporting the true-culprit coin’s value of heads. Human reasoning is particularly good at these kinds of 
inferences. 

“Explaining away” is also a characteristic of perceptual inferences, for example when there are alternative perceptual 
groupings consistent with a set of identical or similar sets of local image features. 
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In general, “explaining away” is a phenomenon that occurs in probabilistic belief networks in which two (or more) vari-
ables influence a third variable whose value can be measured  (Pearl, 1988). Once measured, it provides evidence to infer 
the values of the influencing variables. 
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“heads” in either coin can cause such a “suppression” of the NOT-XOR output, then which coin did the suppressing?  One 
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blame”, reduces our belief that the other caused the observed 0. The other coin’s possible influence is explained away by 
the new evidence supporting the true-culprit coin’s value of heads. Human reasoning is particularly good at these kinds of 
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“Explaining away” is also a characteristic of perceptual inferences, for example when there are alternative perceptual 
groupings consistent with a set of identical or similar sets of local image features. 

Demonstrations of cooperative computation in perception
Several perceptual phenomena that we've seen before can be interpreted as "explaining away".

Occlusion & motion: Lorenceau & Shiffrar, Sinha

Recall translating diamond used to illustrate the aperture problem.

When the diamond is seen as coherently translating, one often also interprets the vertices as being covered by rectangular 
occluders.

Frame 19Frame 1

~7
deg

A.  

B. Diamond moves  
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‡ Translating diamond with "occluding occluders"

Here is one way of viewing occlusion as explaining away:
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Lightness & surface geometry

‡ Mach card
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‡ Lightness and shape

Recall the lightness demonstration that is similar to the Craik-O'Brien-Cornsweet effect, but difficult to explain with a 
simple filter mechanism (Knill, D. C., & Kersten, D. J., 1991). The idea is that the lightness of a pair of luminance gradi-
ents on the left of the figure below look different, whereas they look similar for the pair luminance gradients on the right. 
The reason seems to be due to the fact that the luminance gradients on the right are attributed to smooth changes in shape, 
rather than smooth changes in illumination.

http://vision.psych.umn.edu/www/kersten-lab/demos/lightness.html

These demonstrations suggest the existence of scene representations in our brains for shape, reflectance and light source 
direction. 

Draw a diagram to illustrate the above illusion in terms of "explaining away"

‡ Dependence of lightness on spatial layout

Gilchrist:

In the 1970's, Alan Gilchrist was able to show that the lightness of a surface patch may be judged either dark-gray, 
or near-white with only changes in perceived spatial layout! (Gilchrist, A. L. (1977). How did he do this? What is going 
on? Interpret lightness as reflectance estimation.
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o The Room-in-a-Shoe-Box experiment

o Coplanar card experiment

The left and right inner gray disks in the above figure are the same intensity. In classic simultaneous contrast, the brighter 
annulus on the right makes the inner disk appear darker. 
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Color & shape

‡ Bloj, Kersten & Hurlbert

Demo

http://vision.psych.umn.edu/www/kersten-lab/Mutual_illumination/BlojKerstenHurlbertDemo99.pdf

Interpretation
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Stereo can be used as an auxiliary cue to change the perceived shape from concave to convex.

Dependence of shape on perceived light source direction

Dependence of shape on perceived light source direction

Brewster (1926), Gibson, Ramachandran, V. S. (1990), crater illusion and the single light source assumption

‡ Vertical light direction
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‡ Horizontal light direction

Transparency

‡ Transparency & lightness

Argyle illusion (Adelson. Also, see Wandell's text).
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‡ Motion and transparency (Kersten et al., 1992)

Dependence of transparency on perceived depth

Kersten and Bülthoff

o orientation and transparency

o transparency and depth from motion--computer demo

http://vision.psych.umn.edu/www/kersten-lab/demos/transparency.html

Nakayama, Shimojo (1992)

o transparency and depth from stereo demos, neon color spreading

Dependence on curvature
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Computational theory

Overview

‡ Main problem: There is no single local cue to edge identity

The studies of lightness perception led some psychologists to suggest  that the brain constructed specific representations 
that were estimated representations of reflectance, light source and shape (Bergstrom,  1977; Gilchrist, 1977).  Around the 
same time, two computer vision researchers presented the idea of computation of multiple "intrinsic images" (Barrow, 
H.G. and Tenenbaum, J.M., 1978)

The forward problem (or generative model): I(x,y) = f(reflectance(x,y), illumination(x,y), orientation(x,y),...) 
suggests that ambiguity could be resolved by computing multiple spatial maps: reflectance(x,y), illumination(x,y), 
orientation(x,y), Various visual cues (derived from  I(x,y)) provide soft evidence for the type of edge, and the maps all 
work together to be consistent with the image  I(x,y).

o Edge and surface attribute labelling

-types of edges

reflectance, 

illumination (shadow), 

depth, 

orientation (self-occlusion)

Physiological evidence for surface maps? Not really. Some hint of spatial surface interpolation, but not easy to find in 
single-unit activity (von der Heydt, 2003). However, there is physiological evidence for feature maps, but these may be 
sparse--e.g. Swindale. What might be the relationship to efficient coding?

18 23.PerceptualIntegration.nb



‡ Use of  intermediate-level representation (i.e. of "attribute layers" or intrinsic images)? 

Different goals of the organism require different types of edge  information to be made explicit.  When the edges corre-
spond to object boundaries, this is the segmentation problem.

Examples are:

-Stereo/texture based dense surface reconstruction is more reliable with tokens based on surface markings 

(e.g. shadows OK, but not specularities).

-Shape-based object recognition makes use of surface depth and orientation discontinuities

- Object identification and classification makes use of surface attributes,  not raw image attributes 

(e.g. red vs. green apple; specular or matte).

- Time-to-contact, direction of heading require  geometric rather than material estimates.

‡ Computational problems

Computational problems?

o Integration vs. cooperativity

Prior constraints

- Expressing prior constraints on interactions

reflectance and depth edges often coincide

reflectance and shadow edges rarely coincide

depth and shadow edges rarely coincide

Problem highly non-linear. Regularization/cost function/prior proability solutions involve convoluted topographies, 
e.g. when searching for maximum modes in the posterior.
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‡ Bayesian approaches to cooperative computation

Many of the modular problems of early vision can be interpreted in the framework of  Bayesian statistical inference. 
Problems of cooperative computation can also be framed in this way. Let s1, s2, ..., sn be scene descriptions (e.g. vectors 
corresponding to shape, reflectance, and illumination) that determine the image, i. A MAP approach  would be to find s1, 
s2, ..., sn that account for the image. Again, we would make use of prior as well as posterior constraints to maximize:

The prior probability, which is a joint probability of the various scene attributes is much easier to express if each of the 
scene attributes are statistically independent.

For example of this approach to transparency perception using Markov Random Fields,  see Kersten (1991).

Mixtures of experts. Jacobs et al. , 1991.

Competitive priors.  Yuille and Bülthoff (1996).

Graphical models. In general, we can't just assume independence. We've seen how recent work in Bayes nets and 
graphical models provides methods to analyze the causal or influence relationships between the variables in a complex  
inference problems (Pearl, 1988; Ripley, 1996).

‡ Incorporating higher-level knowledge--Image parsing

For current work in this area applied to segmentation, see: Tu Z, Zhu S-C (2002), Zhu and Tu (2000). For a review, see: 
Yuille and Kersten (2006).
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How complete a reconstruction?

One of the most important topics in computational vision is understanding the short-cuts that vision uses in order to take 
into account other constraints, such as limited information processing resources in terms of neural and temporal con-
straints. We've seen examples of change-blindness before, but take a look again. Does human vision compute a rich 
description of the world at each instant, or does it extract only what it needs from the world out there for the tasks at hand?

‡ "Change blindness"

http://www.cs.ubc.ca/~rensink/flicker/index.html
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