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Lecture 21: Texture

Initialize

‡ Spell check off

Off@General::spell1D;

‡ Read in Statistical Add-in packages:

Off@General::spell1D;
<< Statistics`DescriptiveStatistics`
<< Statistics`DataManipulation`
<< Graphics`Graphics`

‡ Histogram

histogram@image_, nbin_D := Module@8histx<,
Needs@"Statistics`DataManipulation`"D;
histx = BinCounts@Flatten@imageD, 80, nbin - 1, 1<D;
Return@N@histx ê Plus üü histxDD;

D;

‡ Entropy

entropy@probdist_D := Plus üü HIf@# == 0, 0, -# Log@2, #DD & êü probdistL



Outline

Last time

Later, we'll pick up on motion again--namely structure from motion in the context of determining layout and computing 
heading

Surface material:

Surface properties,  color, transparency, etc..

Reflectance & lightness constancy

Today

Generative models for texture classes

The "generic" natural image model

Is human vision "tuned" to natural image statistics?

Generative models for texture
Imagine an image ensemble consisting of all 256x256 images of "grass". This set is unimaginably large, yet there is a set of 
characteristic features that are common to all these images. Imagine we have an algorithm that from knowledge of these 
features generate random image samples from this imaginary  ensemble. One kind of algorithm takes a white noise image as 
input , and produce as output image samples that resemble grass. The white noise input behaves like fair roll of a die.

We show several methods for generating textures.

And then we give an outline of one method for discovering the features from a small number of sample images.

There have been a number of studies that seek to extract the essential features of a texture class (such as "grass" or "fur" or 
"all natural images"...) and then use these to build a texture synthesizer that produces new samples from the same texture 
class. A generative model provides a test of the extent to which the model has capture the essential statistics or features. 
And as we show at the end of this notebook, a generative model can also be used to text theories of the kinds of information 
that human vision has about an image ensemble.

First-order intensity statistics. One of the simplest ways to do this would be to take what you've learned about intensity 
histograms, and then write a program that would produce new images by drawing pixel intensities from your model histo-
gram, assuming each pixel is independent of the others. In other words, make random draws without consideration of any 
other pixel values.
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First-order intensity statistics. One of the simplest ways to do this would be to take what you've learned about intensity 
histograms, and then write a program that would produce new images by drawing pixel intensities from your model histo-
gram, assuming each pixel is independent of the others. In other words, make random draws without consideration of any 
other pixel values.

Make a random image generator that draws samples from an intensity histogram measured from an 
natural image

Random Fractals

Second-order intensity statistics. Recall that one way to characterize the second-order statistics of a natural image is in 
terms of its auto-correlation function. And also recall that the Fourier transform of the autocorrelation function is the spatial 
power spectrum of an image.

Natural images tend to have spatial frequency power spectra that fall off linearly with log spatial frequency (Simoncelli and 
Olshausen). When the slope of the fall-off is within a certain range, such images are called random fractals. The slope is 
related to the fractal dimension.

Random fractals can be characterized by the fractal dimension D (3<D<4) and amplitude spectrum, 1/( fx
2  + fy

2 )^(4-D). 
The amplitude spectrum is thus a straight line when plotted against frequency in log-log coordinates. The condition If[ ] is 
used to include a fudge term (1/(2)^(q)) to prevent blow up near zero in the Module[ ] routine below.

size = 256;

Random fractals have been suggested as good statistical models for the amplitude spectra natural images. Here is one way 
of generating them.

D1 = 3.5;
q = 4 - D1;
LogLogPlot@If@Hi ≠ 0 »» j ≠ 0L, 1 ê Hi * i + 0 * 0L^HqL, 1 ê H2L^HqLD,

8i, 0, size ê 2 - 1<D;
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‡ Here is a function to make a low-pass filter with fractal dimension D. (D, here should be between 3 and 

4). Note that we first make the filter centered in the middle, and then adjust it so that it is symmetric 

with respect to the four corners.

fractalfilter2[D_,size_] :=
Module[ {q,i,j,mat},

q = 4 - D;
mat = Table[If[(i != 0 || j!= 0),

1.0/(i^2 + j^2)^q, 1.0/(2)^(q)],
{i,-size/2,(size/2) - 1},{j,-size/2,(size/2) - 1}];
Return[mat];
];

ft = Table[N[Pi (2 Random[Real]-1)],{i,1,size},{j,1,size}];
ft = Fourier[ft];
randomphase = Arg[ft];
randomspectrum = Abs[ft];

ListDensityPlot@fractalfilterarray = fractalfilter2@3.5, sizeD,
Mesh Ø FalseD;
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LogLogListPlot@
Table@RotateLeft@fractalfilterarray, 8size ê 2 + 1, size ê 2 + 1<D@@i, iDD,
8i, 1, size ê 2<DD;
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‡ Here is a random fractal image, with D = 3.5

ListDensityPlot[Chop[
InverseFourier[RotateLeft[fractalfilterarray,{size/2,size/2}]  
randomspectrum Exp[I randomphase]]],
Mesh->False];
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Texture synthesis using Markov Random Field models & Gibbs sampling
Samples from the fractal process modeled above are multi-variate Gaussian. A major limitation of Gaussian models is that 
they fail to capture phase structure, and in particular edges. This section shows one way to model textures that are piece-
wise constant.

‡ Modeling textures using Markov Random Fields

‡ Sampling from textures using local updates
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The Gibbs Sampler

‡ Set up image arrays and useful functions

size = 32; T0 = 1.; ngray = 16.;
brown = N@Table@Random@Integer, 81, ngray<D, 8i, 1, size <, 8i, 1, size <DD;
next@x_D := Mod@x, sizeD + 1;
previous@x_D := Mod@x - 2, sizeD + 1;
Apply@Plus, Flatten@brownDD ê Length@Flatten@brownDD;

‡ Ising potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L
f@x_, s_, n_D := If@Abs@xD < .5, 0, 1D;
H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = 1.; n0 = 5;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D;
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‡ Geman & Geman potential

Clear@fD; H* Clear@fD; f@x_,n_D:=x^2;*L
f@x_, s_, n_D := N@Sqrt@Abs@x ê sD^n ê H1 + Abs@x ê sD^nLDD;
H*f@x_,s_,n_D:=N@HxêsL^2D;*L
s0 = .25; n0 = 2;
Plot@f@x, s0, n0D, 8x, -2, 2<, PlotRange Ø 80, 1<D;
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‡ Define the potential function using nearest-neighbor pair-wise cliques

Clear@gibbspotential, gibbsdraw, trD;
gibbspotential@x_, avg_, T_D :=
N@
Exp@
-Hf@x - avg@@1DD, s0, n0D + f@x - avg@@2DD, s0, n0D + f@x - avg@@3DD, s0, n0D +

f@x - avg@@4DD, s0, n0DL ê TDD;
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‡ Define a function to draw a single pixel gray-level sample from a conditional distribution determined 

by pixels in neighborhood

gibbsdraw@avg_, T_D := Module@8<,
temp = Table@gibbspotential@x + 1, avg, TD, 8x, 0, ngray - 1<D;
temp2 = FoldList@Plus, temp@@1DD, tempD;
temp10 = Table@8temp2@@iDD, i - 1<, 8i, 1, Dimensions@temp2D@@1DD<D;
tr = Interpolation@temp10, InterpolationOrder Ø 0D;
maxtemp = Max@temp2D;
mintemp = Min@temp2D;
ri = Random@Real, 8mintemp, maxtemp<D;
H*x=Round@Max@0,tr@riDDD;*L
x = Floor@tr@riDD;
Return@8x, temp2<D;

D;

‡ "Drawing" a texture sample

For@iter = 1, iter § 10, iter++,
T = .25;
For@j1 = 1, j1 <= size * size, j1++,
8i, j< = 8Random@Integer, 81, size<D, Random@Integer, 81, size<D<;
avg = 8brown@@next@iD, jDD, brown@@i, next@jDDD , brown@@i, previous@jDDD ,
brown@@previous@iD, jDD<;

brown@@i, jDD = gibbsdraw@avg, TD@@1DD;
D;
ListDensityPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;

D;
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Was it a true sample? Drawing true samples means that we have to allow sufficient iterations so that we end up with images 
whose frequency corresponds to the model. How long is long enough?
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Finding modes

‡ Define annealing schedule

anneal@iter_, T0_, a_D := T0 * H1 ê aL ê H1 ê a + Log@iterDL;
Plot@anneal@iter, T0, 1D, 8iter, 1, 20<, PlotRange Ø 80, 2<D;
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‡ "Drawing" a texture sample with annealing

For@iter = 1, iter § 10, iter++,
T = anneal@iter, T0, 1D;
For@j1 = 1, j1 <= size * size, j1++,
8i, j< = 8Random@Integer, 81, size<D, Random@Integer, 81, size<D<;
avg = 8brown@@next@iD, jDD, brown@@i, next@jDDD , brown@@i, previous@jDDD ,
brown@@previous@iD, jDD<;

brown@@i, jDD = gibbsdraw@avg, TD@@1DD;
D;
ListDensityPlot@brown, Mesh Ø False, PlotRange Ø 81, ngray<D;

D;
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Learning textures
A fundamental problem in learning image statistics that are sufficient for generalization and random synthesis is that images 
have enormously high dimensionality compared with the size of a reasonable database. One method to deal with this is to 
seek out probability distributions that have the same statistics (i.e. a small finite set of statistical features) as those measured 
from an available database (e.g. "1000 pictures of grass"), but are minimally constraining in other dimensions. Suppose one 
has a collection of probability distributions that all have the same statistics. At one extreme, the original database itself 
defines a distribution--a random draw is just a pick of one of the pictures. But this distribution has no "creativity" and leaves 
out a huge set of grass images not in the database. However, at the other extreme, is the maximum entropy distribution 
(Cover and Thomas, 1991).

Minimax entropy learning: Zhu et al.

This section provides a brief outline of work by Zhu, S. C., Wu, Y., & Mumford, D. (1997). Minimax Entropy Principle and 
Its Applications to Texture Modeling. Neural Computation, 9(8), 1627-1660.

See the References for other work on texture learning and modeling.

‡ Maximum entropy to determine pM (I) which matches the measured statistics, but is “least committal”

‡ Minimum entropy to determine statistics/features
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‡ Sample from generic prior

‡ Sample from class-specific prior

Song Chun Zhu, Zhu & Mumford, IEEE PAMI, Zhu, Wu, Mumford, 1997

Original texture

Synthesized sample using Gibbs sampler
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Texture processing: Human efficiency
One can use density estimation tools and texture synthesis models to test hypotheses of human image coding. 

Efficiency of human processing of generic & class-specific textures. Knill, Field & Kersten, 1990

‡ Fractal image discrimination

How well is the human visual system tuned to the correlational structure of images? Scale invariant subset of class of 
images defined by their correlation function, or equivalently by their spatial power spectrum.

Random fractals:  Log(power spectrum) = (2D - 8) Log (spatial frequency)

‡ Samples of the stimuli

‡ The psychophysical task
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‡ The analysis

14 21.Texture.nb



‡ The results
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