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Last time

• Early motion measurement--types of models

•Functional goals of motion measurements

• Optic flow

Cost function (or energy) descent model

A posteriori and a priori constraints

Gradient descent algorithms

Computer vs. human vision and optic flow

-- area vs. contour



Today

‡ Motion phenomena & illusions

Neither the area-based nor the contour-based algorithms we've seen can account for the range of human motion phenomena 
or psychophysical data that we now have. 

Look at human motion perception

‡ Local measurements & neural systems

Representing motion, Orientation in space-time

Fourier representation and sampling

Optic flow, the gradient constraint, aperture problem

Neural systems solutions to the problem of motion measurement.

Space-time oriented receptive fields

‡ Global integration

Sketch a  Bayesian formulation--the integrating uncertain local measurements with the right priors can be used to model a 
variety of human motion results. 
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Human motion perception

Demo:  area-based vs. contour-based models

Last time we asked: Are the representation, constraints, and algorithm a good model of human motion perception? 

The answer seems to be "no". The representation of the input is probably wrong. Human observers often give more 
weight to contour movement than to intensity flow. Human perception of the sequence illustrated below differs from 
"area-based" models of optic flow such as the above Horn and Schunck algorithm. The two curves below would give a 
maximum correlation at zero--hence zero predicted velocity. Human observers see the contour move from left to right--be-
cause the contours are stronger features than the gray-levels. However we will see in Adelson's missing fundamental 
illusion that the story is not as simple as a mere "tracking of edges" --and we will return to spatial frequency channels to 
account for the human visual system's motion measurements. At the end of this lecture, we'll review a Bayesian model that 
integrates local motion information according to reliability, providing a theory that may explain a diverse set of motion 
illusions.

size = 120;
Clear[y];
low = 0.2; hi = .75;
y[x_] := hi /; x<1
y[x_] := .5 Exp[-(x-1)^2]+.1 /; x >= 1

ylist = Table[y[i],{i,0,3,3/255.}];
width = Dimensions[ylist][[1]];

picture1 = Table[ylist,{i,1,width/2}];
picture2 = .9 - Transpose[Reverse[Transpose[picture1]]];
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g1 = 
ListPlot[picture1[[size/2]],DisplayFunction->Identity,PlotStyle->{Hue[.3]}
];
g2 = 
ListPlot[picture2[[size/2]],DisplayFunction->Identity,PlotStyle->{Hue[.6]}
];
Show[g1,g2,DisplayFunction->$DisplayFunction];
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ListDensityPlot[picture1,Frame->False,Mesh->False,  
PlotRange->{0,1}, AspectRatio->Automatic];

ListDensityPlot[picture2,Frame->False,Mesh->False,  
PlotRange->{0,1}, AspectRatio->Automatic];

There is a clear sense of motion of the edge, even though the signal inferred from an intensity, region-based integration of 
optic flow would produce little or no optic flow in that direction.
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Aperture effects

niter = 8; width = 64; 
theta1 = Pi/4.; contrast1 = 0.5; 
freq1 = 4.; period1 = 1/freq1; 
stepx1 = Cos[theta1]*(period1/niter); stepy1 = 
Sin[theta1]*(period1/niter);

grating[x_,y_,freq_,theta_] := Cos[(2. Pi freq)*(Cos[theta]*x + 
Sin[theta]*y)];

‡ Circular aperture

For[i=1,i<niter + 1,i++,
DensityPlot[If[(x-0.5)^2+(y-0.5)^2<0.3^2,grating[x+i*stepx1,y+i*stepy1,fre
q1,theta1],0],{x,0,1},{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];
];
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‡ Square aperture

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,1},{y,0,1},
Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];

];
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What do you see at the vertical boundaries? The horizontal boundaries?

‡ Rectangular horizontal aperture

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,1},{y,0,.25},
Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width,  

AspectRatio->Automatic];
];
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‡ Rectangular vertical aperture

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1],{x,0,.25},{y,0,1},
Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width,  

AspectRatio->Automatic];
];
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Project idea: Try the above with stereo-defined apertures

Adelson's missing fundamental motion illusion

We first make a square-wave grating.

realsquare[x_,y_,phase_] := Sign[Sin[x + phase]];
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And make a four-frame movie in which the grating gets progressively shifted LEFT in steps of 
Pi/2. That is we shift the grating left in 90 degree steps.

For[i=0,i<4, i++,
DensityPlot[realsquare[x,y,i Pi/2],
{x,0,14},{y,0,1}, Frame->False,

Mesh->False,PlotPoints -> 60, Axes->None, PlotRange->{-4,4}]
];

16 19.MotionHumanPerception.nb



A square wave can be decomposed into its Fourier components as:

 realsquare(x) = (4/p)*{sin(x) + 1/3 sin(3x) + 1/5 sin(5x) + 1/7 sin(7x) + ...}

Now subtract out the fundamental frequency from the square wave

...leaving (4/p)*{1/3 sin(3x) + 1/5 sin(5x) + 1/7 sin(7x) + ...}

realmissingfundamental[x_,y_,phase_]  := realsquare[x,y,phase] - (4.0 / Pi) Sin[x + phase];
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And make another four-frame movie in which the missing fundamental grating gets 
progressively shifted LEFT in steps of Pi/2. That is we shift the grating left in 90 degree steps.

It is well-known that a low contrast square wave with a missing fundamental appears similar to the square wave (with the 
fundamental). (There is a pitch analogy in audition.) One reason is that we are more sensitive to sharp than gradual changes 
in intensity. If you look at the luminance profile with the missing fundamental, you would probably guess that the perceived 
motion for this sequence would appear to move to the left, as before. But it doesn't. Surprisingly, the missing fundamental 
wave appears to move to the right!

For[i=0,i<4, i++,
DensityPlot[realmissingfundamental[x,y,i Pi/2],

{x,0,14},{y,0,1}, Frame->False,
Mesh->False,PlotPoints -> 60, Axes->None, PlotRange->{-4,4}]

]
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Play the above movie. It typically appears to be moving to the right. You can generate movies with different contrasts by 
adjusting the PlotRange parameters.

In fact the missing fundamental frequency moves towards the left as you can see by playing the 
movie below.

For[i=0,i<4, i++,
Plot[Sin[x + i Pi/2],{x,0,14},
PlotPoints -> 60, Axes->None]

];
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What in the stimulus does move to the right? 

Why might this be? Probably the best explanation comes from looking at the dominant frequency component in the 
pattern, which is the 3rd harmonic. It turns out that the third harmonic is jumping in 1/4  cycle steps to the right, even 
though the pattern as a whole is jumping in 1/4 cycle steps (relative to the missing fundamental) to the left, as shown in the 
figure below:

Make a movie with Plot[ ] that shows the third harmonic. Which way does it move?

For[i=0,i<4, i++,
Plot[Sin[3 (x + i Pi/2)],{x,0,14},PlotPoints -> 60]

]
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And here is the movie with just the third harmonic. Which way does it move?

For[i=0,i<4, i++,
DensityPlot[Sin[3 (x + i Pi/2)],

{x,0,14},{y,0,1}, Frame->False,
Mesh->False,PlotPoints -> 60, Axes->None, PlotRange->{-4,4}]

]
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The main conclusion drawn from this demonstration is that human motion measurement mechanisms are tuned to spatial 
frequency. 

How can the inferred biological mechanisms be pieced together to compute optic flow? We can construct the 
following rough outline. (For an algorithm for optic flow based on biologically plausible spatiotemporal filters see Heeger, 
1987). Assume we have, at each spatial location, a collection of filters tuned to various orientations (q) and speeds (s) over a 
local region. (Already we run into problems with this simple interpretation, because many V1 cells are known to be tuned to 
spatial and temporal  frequency in such a way that the spatio-temporal filter is the product of the space and time filters. This 
means that there is a favored temporal frequency that is the same across spatial frequencies, so the filter will be tuned to 
different speeds depending on the spatial frequency). 

In this scheme, the optic flow measurements are distributed across the units, so if we wanted to read off the velocity from 
the pattern of activity, we would need some additional processing. For example, the optic flow components could be 
represented by the "centers of mass" across the distributed activity. Because these measurements are local, we still have the 
aperture problem. We will look at possible biological solutions to this problem later.

Project idea: Try the above with contours of low amplitude, rather than contrast gratings

Moving rhombus illusions

http://stuff.mit.edu/people/kanile/rhombus/rhombus.html

Motion Plaids

Two overlapping (additive transparent) sinusoids at different orientations and moving in different directions are, under 
certain conditions seen as a single pattern moving with a velocity consistent with an intersection of constraints. Under other 
conditions, the two individual component motions are seen.
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‡ Adding two gratings, single frame

Grating 1

Grating 2

Plaid grating: Grating 1 + Grating 2
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‡ Initialize parameters

niter = 16; width = 64; 
theta1 = Pi/4.; contrast1 = 0.5; theta2 = -Pi/4.; contrast2 = 0.25;
freq1 = 8.; period1 = 1/freq1; freq2 = 2.; period2 = 1/freq2;
stepx1 = Cos[theta1]*(period1/niter); stepy1 = 
Sin[theta1]*(period1/niter);

stepx2 = Cos[theta2]*(period2/niter); stepy2 = 
Sin[theta2]*(period2/niter);
(*stepx = Min[stepx1,stepx2]; stepy = Min[stepy1,stepy2];*)

grating[x_,y_,freq_,theta_,contrast_] := contrast*Cos[(2. Pi 
freq)*(Cos[theta]*x + Sin[theta]*y)];

‡ Display plaid grating

For[i=1,i<niter + 1,i++,
DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1,contrast1]+  

grating[x+i*stepx2,y+i*stepy2,freq2,theta2,contrast2],{x,0,1},{y,0,1},
Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];

];
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‡ Display grating 1 only

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx1,y+i*stepy1,freq1,theta1,contrast1],{x,0,1},
{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];
];
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‡ Display grating 2 only

For[i=1,i<niter + 1,i++,

DensityPlot[grating[x+i*stepx2,y+i*stepy2,freq2,theta2,contrast2],{x,0,1},
{y,0,1},

Mesh->False,Frame->None,PlotRange->{-2,2},PlotPoints->width];
];

Now try the above motion plaid with equal spatial frequencies and contrasts

Orientation in space-time
In this section, we'll see how viewing motion measurement as detecting orientation in space-time is related to neurophysio-
logical theories of  neural motion selectivity.

Representation of motion

‡ Mathematica demo

size = 32; x0 = 4; y0 = 4; pw = 12; xoffset = 1;
A1 = Table@Random@D, 8size<, 8size<D; H*A2 = A1;*L
A2 = Table@Random@D, 8size<, 8size<D;
A2@@Range@y0, y0 + pwD, Range@x0, x0 + pwDDD =
A1@@Range@y0, y0 + pwD, Range@x0 - xoffset, x0 + pw - xoffsetDDD;

ListDensityPlot@A1, Mesh Ø FalseD;
ListDensityPlot@A2, Mesh Ø FalseD;

28 19.MotionHumanPerception.nb



0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

nframes = 8;
xt = {};
For[i=0,i<nframes,i++,

A2[[Range[y0,y0+pw],Range[x0,x0+pw]]] = 
    A1[[Range[y0,y0+pw],Range[x0+i,x0+pw+i]]];

xt = Join[xt,{A2[[8]]}]
];

ListDensityPlot[Transpose[xt], Mesh->False, 
Axes->True,AxesLabel->{"t","x"}];
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‡ x-y-t space
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Neurophysiological filters

‡ Space-time filters for detecting orientation in space-time

From Wandell, "Foundations of Vision", 1995
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‡ A possible mechansim for building space-time filters from two spatial filters with a temporal delay

Wandell, "Foundations of Vision", 1995

‡ Relationship of the gradient constraint to oriented space-time filters

vx  and vy  correspond to u and v used in the previous lecture.

Image L(x,y,t) -> blurred in space and smeared in time, g(x,y,t). Consider just one spatial dimension, (t,x) space.
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Bayesian model for integrating local motion measurements
Global integration.

Yuille, A., & Grzywacz, N. (1988); 
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Recall Lorenceau & Shiffrar's demo

General problem

Intersection of constraints revisited

Grating plaids sometime seen as coherent, other times as two overlapping transparent gratings moving separately.
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Weiss, Simoncelli, & Adelson's Bayes model for integration

Weiss Y, Simoncelli EP, Adelson EH (2002) & Yuille, A., & Grzywacz, N. (1988)

‡ Probabilistic interpretation of intersection of constraints
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The plot illustrates the calculation of the posterior: 

p(vx ,vy | perpendicular component1, perpendicular component 2) ∝ p(perpendicular component1 | vx )p(perpendicular 
component 2 | vx ) p(vx ,vy )

‡ Probabilistic interpretation with noisy measurements
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‡ Generalize to other types of motion stimuli

Requirements for generalizatoin:

Base likelihoods on actual image data

spatiotemporal measurements

Include “2D” features

E.g. corners

Rigid rotations, non-rigid deformations

Stage 1:local likelihoods

Stage 2: Bayesian combination

- Prior

slowness -- wagon wheel example, quartet example

smoothness - e.g. translating rigid circle

‡ Overview of Weiss & Adelson theory

http://www-bcs.mit.edu/people/yweiss/intro/intro.html
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Tests of theory

‡ Rhombus experiment
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‡ Aperture effects
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‡ Plaids

From Weiss and Adelson, 1998. Type I and I plaids. (Yo and Wilson, 1992)
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