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Daniel Kersten
Lecture 14: Contrast normalization, Intro to Scenes from Images

Initialize

‡ Spell check off

In[1]:= Off@General::spell1D;

Outline

Last time: Continue with discussion of the two views of the function of early visual 
coding

‡ Oriented filters: efficient coding vs. Edge/bar detection

--Efficient coding means fewer bits required to encode image

Examples: PCA->dimension reduction->quantization. Decorrelates filter outputs. Filters localized in space and 
spatial frequency do too (e.g. wavelets).

Sparseness--high kurtosis histograms for filter outputs

--Edge/bar detection: local image measurements that correlate well with useful surface properties

‡ Problems with edge detection

Noise & scale

Various scene causes can give rise to identical image intensity gradients

--no local information to "disambiguate" an edge



Today

‡ Next week's homework

‡ Adaptive filtering

‡ Extrastriate cortex--overview

‡ Scenes from images, scene-based modeling of images

Adaptive spatial filters & V1 cells

‡ Simultaneous contrast

A classic brightness illusion demonstrates what we might expect of a spatial filter that adapts its response to the response 
of its neighbors. The circle on the left appears to be darker than the circle on the right; however, the intensity is the same 
for both (ming). One way to explain this is that the respone of a single unit that signals intensity gets divided by the 
responses of neighboring units that also signal intensity.
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width = 110; radius = width ê 5;
maxg = 0.85; ming = 0.5; maxg2 = 0.55;
d1 = Table@If@Hi - width ê 2L^2 + Hj - width ê 2L^2 < radius^2, ming, maxgD,

8i, 1, width<, 8j, 1, width<D;
g1 = ListDensityPlot@d1, Mesh Ø False, PlotRange Ø 80, 1<, Frame Ø False,

DisplayFunction Ø IdentityD;
d2 = Table@If@Hi - width ê 2L^2 + Hj - width ê 2L^2 < radius^2, ming, maxg2D,

8i, 1, width<, 8j, 1, width<D;
g2 = ListDensityPlot@d2, Mesh Ø False, PlotRange Ø 80, 1<, Frame Ø False,

DisplayFunction Ø IdentityD;
Show@GraphicsArray@8g1, g2<, GraphicsSpacing Ø .1D,
DisplayFunction Ø $DisplayFunctionD;

‡ Simultaneous "Contrast of Contrast"

The above illusion involved manipulating mean light level. What if we manipulate contrast (or variance) and keep the 
means fixed?
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width = 110; radius = width ê 5;
maxg := 0.8 *HRandom@D - 0.5L + 0.5;
ming := 0.25* HRandom@D - 0.5L + 0.5;
maxg2 := 0.15* HRandom@D - 0.5L + 0.5;
d1 = Table@If@Hi - width ê 2L^2 + Hj - width ê 2L^2 < radius^2, ming, maxgD,

8i, 1, width<, 8j, 1, width<D;
g1 = ListDensityPlot@d1, Mesh Ø False, PlotRange Ø 80, 1<, Frame Ø False,

DisplayFunction Ø IdentityD;
d2 = Table@If@Hi - width ê 2L^2 + Hj - width ê 2L^2 < radius^2, ming, maxg2D,

8i, 1, width<, 8j, 1, width<D;
g2 = ListDensityPlot@d2, Mesh Ø False, PlotRange Ø 80, 1<, Frame Ø False,

DisplayFunction Ø IdentityD;
Show@GraphicsArray@8g1, g2<, GraphicsSpacing Ø .1D,
DisplayFunction Ø $DisplayFunctionD;

‡ Contrast normalization

It turns out that neurons in V1 show an analogous response to your own perception of contrast.

The linear spatial receptive field model for a V1 neuron says that that response should scale linearly with contrast. But 
simple cells don't show this property--instead, the response begins to saturate at high input contrasts (e.g. for a drifting 
sinusoidal grating matching the orientation, spatial frequency and motion direction preferences of the cell). Time-wise, the 
response also begins to occur sooner as the stimulus contrast is increased. Another break-down is seen in the response of a 
cell to the combination of a horizontal and vertical sinusoidal gratings. Linearity predicts the response to the sum should be 
the sum of the responses, but it isn't. Instead neurophysiologists find "cross-orientation inhibition". Interestingly enough, a 
cell that prefers say the vertical grating will typically show zero response to the horizontal one; yet, the presence of the 
horizontal one still inhibits the cell's firing to the vertical.
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A model that quantitatively accounts for the responses of simple cells is called the "contrast normalization" model (Heeger, 
1997 ; Carandini, M., & Heeger, D. J. (1994)).

‡ Contrast normalization & image statistics

We've noted that a number of image basis sets yield image coefficients that are essentially uncorrelated for natural images. 
Fourier, and PCA bases all tend to produce uncorrelated outputs for natural images. Wavelets and gabor-filters also tend to 
produce uncorrelated outputs for natural images. Wavelets may be close to providing an independent components represen-
tation for natural images.  Independent Components Analysis (ICA) seeks basis sets for which p(a,b) = p(a)p(b), where a 
and b are coefficients. This is in contrast to PCA which seeks bases for which E(ab) = E(a)E(b) (Recall that independence 
implies no correlation, but not the reverse).

Consider a standard model for V1 cells consisting of a set of gabor-like filters, or more specifically a wavelet basis set 
selective for several orientations and spatial scales, spread across the image domain. Despite the fact that the responses are 
decorrelated,  gathering image statistics shows that the wavelet coefficients are not statistically independent.
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Figure from: Eero P Simoncelli and Odelia Schwartz (1998) Modeling Surround Suppression in V1 Neurons with a 
Statistically-Derived Normalization Model . Advances in Neural Information Processing Systems 11. ed. M.S. Kearns, 
S.A. Solla and D.A. Cohn, pp. 153-159, May 1999. © MIT Press, Cambridge, MA. See: http://www.cns.nyu.edu/~eero/-
ABSTRACTS/simoncelli98d-abstract.html

The figure shows that the expected value of the ordinate coefficient is about zero regardless of the abscissa value, i.e. the 
correlation is about zero. However, the variance of the ordinate increases with the absolute value of the abscissa--the 
responses are not independent of each other. Simoncelli & Schwartz (1998) report this pattern for pairs of coefficients at 
neighboring spatial positions, orientation and scales. Remarkably, the statistical dependence goes away if the image filter 
responses are normalized by the sum of responses of nearby filters. In other words, the contrast normalization model 
(above)  could be the consequence of an efficient coding principle.

(The Appendix of 12.SpatialCodingEfficiency.nb has code for calculating a 2D histogram plot of joint spatial filter 
statistics for an image.)
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Overview of extrastriate cortex
We've seen how to model the processing of spatial visual information in V1. Twenty years ago, one might have thought 
that a thorough understanding of primary visual cortex would produce a thorough understanding of visual perception. Not 
so. Since then, neurophysiologists have shown that primate visual processing has only just begun in V1.

‡ Extra-striate cortex

Primary visual cortex sends visual information to many modules (current estimates are about 30 visual areas). These areas 
have been identified through anatomical, histological, and physiological techniques starting with the early work of Samuel 
Zeki at the University of London, and the extensive work by David Van Essen and colleagues.

Function: physiology, neurons in different brain areas selective for different aspects of their inputs

Architecture: cytoarchitecture (e.g. cell size,cell density, density of axons,l ayering, discovered using 
different kinds of stains).

Connections: anatomical connections are traced using retrograde and anterograde tracers.

Topography:retinotopic maps in each of several of the early visual areas (V1-V8).

Many of these areas have crude topographic maps of the visual field. Primary visual cortex has a fairly precise topographic 
map of the visual field--nearby points in the image map to nearby cells in V1.
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‡ More complicated--"plumbing diagram"

‡ Pathways

The flow of visual information through extra-striate cortex is though follow two dominant streams. In the  dorsal or  
parietal areas, information flows from primary cortex to parietal cortex. An example stream would be from areas V1 <-> 
MT <-> MST. 

The temporal stream takes information from primary visual cortex to infero-temporal cortex. One specific sub-
stream of information, for example, is:  V1 <-> V2 <-> V4 <-> IT. 
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One of the remarkable discoveries about extra-striate cortex is the identification of hierarchical organization and multiple 
parallel pathways (See Felleman and Van Essen, 1991; DeYoe and Van Essen, 1988; DeYoe et al., 1994). Hierarchical 
organization is identified using anatomical tracing techniques. A general pattern has emerged in which there tend to be:

• feedforward connections from superficial layers (I,II,III) to IV

• feedback connections originating in deep (V, VI) and superficial layers and terminating in and outside 
layer IV.

The figures show examples of some of the interconnections between areas. 

What are these extra-striate visual areas of cortex doing? Generally, we have seen that it is involved with recognition and 
navigation. But it is important to begin to look for detailed computations that extra-striate areas are doing. At the current 
time, we have only a few ideas, some of which we will look at in the lectures  on motion perception.

For example, the very large receptive fields found in extra-striate areas (e.g. MT cells can have receptive fields as 
large as 100 deg!) bring together information from distant parts of the visual field. One idea  is that  information which 
likely belongs to same object, or have the same causeis which being brought together. Specific problems are:  stereovision,  
motion disambiguation, and color constancy. Some indication of possible function is provided by the icons for color (prism 
wedge), binocularity (spectacles), orientation (angle), and motion (finger pointing) in the figure above.

The fascinating discoveries of 30+ extra-striate visual areas, together with a lack of ideas about what all of these 
modules are doing, suggests that it might be useful to step back, take a look at what we know so far, and then think about 
the computations that are required to perceive and act. The next section gives an outline of early visual function, summariz-
ing much of what we have covered, and the last section provides an introduction to the computational problem of going 
from image to scene representations.
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What are these extra-striate visual areas of cortex doing? Generally, we have seen that it is involved with recognition and 
navigation. But it is important to begin to look for detailed computations that extra-striate areas are doing. At the current 
time, we have only a few ideas, some of which we will look at in the lectures  on motion perception.

For example, the very large receptive fields found in extra-striate areas (e.g. MT cells can have receptive fields as 
large as 100 deg!) bring together information from distant parts of the visual field. One idea  is that  information which 
likely belongs to same object, or have the same causeis which being brought together. Specific problems are:  stereovision,  
motion disambiguation, and color constancy. Some indication of possible function is provided by the icons for color (prism 
wedge), binocularity (spectacles), orientation (angle), and motion (finger pointing) in the figure above.

The fascinating discoveries of 30+ extra-striate visual areas, together with a lack of ideas about what all of these 
modules are doing, suggests that it might be useful to step back, take a look at what we know so far, and then think about 
the computations that are required to perceive and act. The next section gives an outline of early visual function, summariz-
ing much of what we have covered, and the last section provides an introduction to the computational problem of going 
from image to scene representations.

‡ Dominant functional streams

Based on studies of the behavior of monkeys and man with  lesions, and  work using electrophysiological techniques, it is 
thought that the parietal stream has to do with navigation, and view-centered representations of the visual world. It is 
sometimes called the "where" system (Mishkin and Ungerleider, 1983). Although it may more to do with "how" (Goodale 
& Milner 1992).

The temporal stream is sometimes called the "what" system. It is believed to be important for non-view centered representa-
tions useful for object recognition. Form and color of objects is thought to be extracted by interacting modules in the 
temporal stream.

Current working hypotheses regarding function:

dorsal / parietal areas: e.g. V1 -> MT -> MST

"where out there?"

navigation, viewer centered representation

motion for layout, heading (MST)

...and eventually for driving motor actions such as reaching

temporal: e.g. V1 -> V2 -> V4

"what is it?"

processing for non-viewer or object-centered representation

material color and shape & form

...and eventually, temporal areas (IT) for object recognition

‡ General Extra-striate Functions

Bring together local information/measurements from distant parts of the visual field likely to belong to same object, or 
have the same cause

e.g. stereovision for surfaces, object motion, color constancy of surfaces, ...
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‡ Major computational theme

Suggests a major computational theme: How to integrate local ambiguous measurements to arrive at functional representa-
tions of objects and their relationships to each other and to the viewer?

Scenes from images
We know quite a bit about the brain's early processing of image information. But what we have learned tells us rather little 
about perception. Most of what we have studied shows how image information is coded into other forms that still has more 
to do with the image, than with what is out there, that is, the scene. But as much as 40-50% of visual cortex may be 
involved in visual processing, including both the primary visual area and extra-striate areas. What is all this cortex for? In 
order to begin to answer this question, we ask a more general question of interest to both computer and biological vision 
scientists.
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The role of computer vision

‡ Visual function & tasks

So far, we've primarily addressed the issue of visual input, and have by and large ignored the analysis of functional visual 
behavior. Now it is time to ask: What are the goals of vision? The  obvious answers are to gain information about the 
physical world useful for  navigating, recognizing objects and planning future actions. In the 1940’s, Kenneth Craik  
suggested that perception was a  process in which the brain constructs a model of the physical world, in much  the same 
way that in engineer builds (or perhaps simulates on a computer) a  scale model of an airplane. The purpose of such a 
model is to test hypotheses about how it would function if  actually built. This process of going from an image, which is a 
changing array  of light intensities, to a model of the environment is a problem of image  understanding. In order to gain an 
appreciation for what this process  entails, let us look at some example questions of image understanding. But it is not 
necessarily the case that a 3D representation of the world is the best preliminary step to achieve a functional goal. There 
may be more direct and processing strategies that are efficient in achieving a goal. In fact, evidence from human studies of 
visual attention show that people can be surprisingly "blind" to major changes between two images. This is the so-called 
phenomenon of "change blindness".

Nevertheless, no one disputes that vision must somehow convert image input to useful output. Here are some examples.

• Given a dynamically expanding image on my retina, how long will it  be before I collide with the object produc-
ing it? Here one would like  to  estimate time-to-contact from changing light intensities. One preliminary step may be to 
estimate optic flow, that is, compute the 2D projected velocity field of the 3D surface points.  We will see later how a 
simple measure of optic flow expansion rate can be used to predict "time to contact".

• Given two slightly different  images, one in the left eye and one in  the right, what is the relative depth of  the 
various objects causing the two images? This is the problem of stereopsis.

• Given spectral, spatial and  temporal changes in the illumination falling on a particular object,  how can I  assign 
a relatively stable color to it? This is the problem of color constancy. In particular, when driving down the road, how do I 
avoid misinterpreting a large dark shadow for a turn off exit?  Without direct measurements of the incident light, it is not 
immediately  clear how to do this.   

• Given a shading or texture pattern, how I can infer the shape of the object? This is the shape-from-X problem, 
where X is a local image measurement such as shading or texture gradients or motion flow. 

These problems are so trivial for us as observers, they disguise the underlying difficulty of perception. Until the 
attempts over  the last couple of decades to develop intelligent computer vision systems, it  was not fully appreciated that 
many of the visual tasks that we as human  observers accomplish so effortlessly are profoundly difficult to reproduce  with 
a machine. We emphasized at the beginning of this course that to understand the biology and psychology of image under-
standing, one must also study the computational problems  the biological substrate supports (Marr, 1982).  Many diverse 
goals, suggests the importance of maintaining as much information as possible during early transmission stages perhaps 
through the kind of efficient coding models that we have studied. Succeeding stages preserve information, but with progres-
sive selection aimed at the goals of the visual system.
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‡ The difficulties of developing image understanding models

What are the  difficulties of image understanding? We've already spent considerable time thinking about how image inputs 
should be represented. Two major  additional problems are:  

• What is the output and how should it be  represented?  

• How can we compute  scene-related outputs given an set of image measurements or representation? 

Although the first input to vision can be represented as light intensity as a function of space  and time, followed by 
spatial and temporal filtering,  it is not at all clear how to represent the brain's visual "output". 

One view is to model estimates of the  scene parameters causing the image. Another (not necessarily exclusive) 
view is to more directly extract useful parameters for function (e.g. geometric shape dimensions for object recogniiton, or 
time-to-contact for braking). 

‡ The role of scene-based image modeling

The image filtering approach can be thought of as primarily "image-based". The advantage of image-based modeling is 
that it is "closer to the input". 

When we consider visual tasks however, it is useful to consider generative models that are "closer to the output" of vision. 

So one first step of analysis is to understand the generative model of image formation in terms of the causal structure of the 
world. Here we can gain insight from 3D computer graphics. For example, here is a model of the image L(x,y):

L(x,y)  = f(R(x,y), N(x,y), V, E)

where L is the luminance, R is the albedo (surface reflectivity), N is a  vector representation of the shape of the surface, V 
is the viewer angle, and  E describes the lighting geometry (number, type and power of  illuminants). 
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‡ The inverse 3D graphics metaphor

One way to view vision is as the  reconstruction of the scene or as the "decrypting" of the image to reveal the "message" 
that the world is sending. In this sense image understanding  is a problem in inverse optics  or ("inverse computer graph-
ics"). As an  example, the forward optics problem may specify the  luminance at each  point of a surface as a function of 
the surface's albedo, its local geometry (or  shape), the position of the viewer relative to the surface, and the lighting  
conditions:  

The inverse problem  is to take as input, L, and compute the scene causes R ,  N,  V or E. Although it is unlikely that 
human vision exactly solves the inverse graphics problem even in small domains, the metaphor is useful (Kersten, 1997) to 
make explicit image ambiguities and to test functional goals and constraints utilized in human perception. But there are 
limitations to the metaphor. One of them is that it doesn't make explicit the diverse set of tasks and requiremenst of flexible 
visual processing to accomplish those tasks.

Even if we could solve the inverse problem, how should one  represent the mental homologues of shape, material proper-
ties, lighting or the geometrical relations  between objects? For example, should depth be represented as absolute  distance, 
relative distance,  or perhaps not  metrically at all, but rather in terms of ordinal relations? Should shape be represented 
locally or globally? When is it important to compute depth, the first derivative of depth, or the second deriviative of depth? 
Each has a different utility, and the image information supporting inference can have a different relation to each. Despite 
the fact  that the representation issue is so critical to arriving at a true account of  biological visual functioning, it is often 
the most difficult to answer. Clues  have to be sought  in neurophysiological, psychophysical and computational  studies. 
We will emphasize the computational approach to these problems  and often will proceed with only a guess as to what the 
visual system is  computing, and then look at how one can get from the input data to the  desired output.

The second major problem is specifically that the image data, L(x,y,t) does not make  explicit any of the parameters 
representing the scene.

We run into two sub-problems. First, any local image measurement is often a function of more than one cause. For exam-
ple, an intensity change is a function of material and illumination change. Further, even when given multiple  sources of 
visual information (e.g. motion parallax and stereo views), one has  to somehow combine this information to yield a 
unitary percept.  This combination should be done in a common "language", with some measure of the reliability of each 
source. Second, even a single cause may be ambiguous. For example, many 3D "wire" objects map to the same 2D line-
drawing. The image data mathematically  underconstrains the solution--the inference or estimation problem is sometimes 
said to be "ill-posed". 
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The second major problem is specifically that the image data, L(x,y,t) does not make  explicit any of the parameters 
representing the scene.

We run into two sub-problems. First, any local image measurement is often a function of more than one cause. For exam-
ple, an intensity change is a function of material and illumination change. Further, even when given multiple  sources of 
visual information (e.g. motion parallax and stereo views), one has  to somehow combine this information to yield a 
unitary percept.  This combination should be done in a common "language", with some measure of the reliability of each 
source. Second, even a single cause may be ambiguous. For example, many 3D "wire" objects map to the same 2D line-
drawing. The image data mathematically  underconstrains the solution--the inference or estimation problem is sometimes 
said to be "ill-posed". 

Preview of the role of ideal observers & Bayesian decision theory

It is  useful to start off with a formal statement of what an ideal  image understanding system should be doing, and then 
investigate the ways  in which one might approach this ideal (Knill and Kersten, 1991; Kersten and Madarasmi).  In 
particular, the ideal observer can be modeled as a Bayesian estimator of scene parameters, given image data. E.g. the MAP 
observer would pick the most probable scene given a fixed set of image measurements based on the posterior probability

p(scene | image measurements)

This  formulation casts many of our image understanding problems in terms of  finding minima of high dimensional "cost" 
or "energy" functions.  We can run into problems  with multiple minima, and it becomes difficult to find the right one, 
which in general is the lowest one. One can either improve the descent methods (e.g. simulated annealing, or multi-grid 
techniques), re-shape the topography of the cost function  appropriately, or change the representational architecture of the 
problem .  This involves choosing the right input and output representations, and raises questions like: Should one use raw 
light intensities for input, or some other primitives like  edges or local Fourier transforms? What purpose is gained by 2D  
preprocessing or filtering of the image? We can get some insight into these questions by  studying what is known about the 
psychology and physiology of vision. A Bayesian approach adds an additional and arguably important twist by placing an 
emphasis on the reliability of multiple sources of interacting information--a competent visual inference device doesn’t just 
proceed by passing the estimate at one stage on to the next, it should also pass information regarding the reliability of its 
estimates.  

   Choosing an efficient algorithm for  finding the right solution depends on  both the computational problem and on 
the hardware available for  implementation. We will see that neurons have limited dynamic range,  limited metabolic 
resources, limited dendritic connectivity and spread, and  so forth.  Efficiency has to be evaluated relative to both computa-
tional and  hardware constraints. 

  How does the inverse optics or graphics view differ from efficient coding?
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Knill & Kersten revisited

‡ Land & McCann's "Two squares and a happening"

The left half looks lighter than the right half. But, let's plot the intensity across a horizontal line:

The two ramps are identical...tho' not too surprising in that that is how we constructed the picture. How can we explain this 
illusion based on what we've learned so far?

One explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from calculus that the  
second derivative of a linear function is zero. So a second derivative should filter out the slowly changing linear ramp in 
the illusory image. We approximate the second derivative with a discrete kernel (-1,2,-1). 

The steps are: 1) take the second derivative of the image; 2) threshold out small values; 3) re-integrate
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‡ Knill & Kersten's "Two cylinders and no happening"

But the perceived lightness contrast for the slabs is significantly stronger than it is for the two cylinders. A spatial 
convolution/derivative model would predict the same for both. The spatial convolution operation won't work as an explana-
tion! So what will?
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‡ The inverse graphics metaphore & "the two-cylinders & no-happening"
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Low-level ("early"), intermediate-level (middle),  and high-level vision.

Low-level--local measurements, simple grouping procedures

Intermediate-level--surfaces and surface-like representations, objects,..

High-level--functional tasks, object recognition, reaching,...
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