Computational Vision
U. Minn. Psy 5036

Daniel Kersten
Lecture 12: Coding Efficiency, Spatial statistics

Initialize

m Read in Statistical Add-in packages:

In[40]:= Off [General::spelll];
<< Statistics DescriptiveStatistics™
<< Statistics DataManipulation”

In[43]:= << Statistics MultiDescriptiveStatistics™
<< Statistics ContinuousDistributions™
<< Statistics MultinormalDistribution”

m Histogram

In[46]:= histogram[image_] := Module[{histx},
Needs["Statistics DataManipulation™"];
histx = BinCounts[Flatten[image], {0, 255, 1}];
Return[N[histx /Plus @@ histx]];

1:

m Entropy

In[47]:= | entropy[probdist_] :=Plusee (If[#==0, 0, -# Log[2, #]] & /@ probdist)

Import image file

In[48]:= | granite = Import [Experimental FileBrowse [False]];
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In[49]:=

In[52]:=

Out{52]=

Out[53]=

Out{54]=

granite = granite /. Graphics - List;
granite = granite[[1l, 1]];
ListDensityPlot [granite, Mesh » False];
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N[Mean[Flatten[granite]]]
N[StandardDeviation[Flatten[granite]]]
width = Dimensions[granite] [[1]]

129.524

19.7279

64
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I Outline

Last time

m Understanding intensity statistics, and point non-linearities in terms of efficient coding of natural

images

Today
® Form and function: overview of visual pathway

m Spatial statistics and efficient coding

We've learned about localized spatial frequency filters in early vision. We now ask: Why?

I Retina to V1: Review of form & function

(There are a number of web-based overviews, for example:
http://www.sumanasinc.com/webcontent/anisamples/neurobiology/visualpathways.html).
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Overview of pathways from eye-to-cortex

Roughly ten million retinal measurements are sent to the brain each second, where they are processed by some billion
cortical neurons.

The primate retina has about 1027 cones that send visual signals to the optic nerve via about 1026 ganglion cells. The
optic nerves from the two eyes meet at the optic chiasm where about half of the fibers cross over and the other half
remain on the same side of the underside of the brain. Before synapsing in the lateral geniculate nucleus, about 20% of
these fibers that make up the optic tract branch off to the superior colliculus--a structure involved with eye movements.
The rest of the optic tract fibers synapse on cells in the lateral geniculate nucleus. Cells in the lateral geniculate nucleus
send their axons in a bundle called the optic radiation to layer IV (one of six layers) of primary visual cortex. A schematic
representation of these pathways was shown in notes for an earlier lecture.

Retina

Earlier we noted that retinal ganglion cells have a characteristic center-surround organization with excitatory centers and
inhibitory surrounds (or inhibitory centers and excitatory surrounds). We modeled the spatial output of the retina as a
linear filter that convolves the input image with a kernel determined by the center-surround receptive field weights--a
so-called single channel model, because the kernel is assumed to be the same shape and size at different locations. The
spatial frequency bandpass characteristics of the retina are determined by just one kernel.

The retina's temporal processing can also be thought of as differentiation, but in time rather than space, and can be
modeled as a band-pass temporal frequency filter (see Enroth-Cugell and Robson, 1966). Analogous to the spatial fre-
quency selectivity, retinal ganglion cells pass the contrast of medium temporal frequencies more effectively than either
low or high frequencies. For a retinal ganglion cell, contrast sensitivity as a function of temporal frequency is an inverted
U, qualitatively similar to the spatial CSF. Humans are insensitive to temporal frequencies higher than the temporal cut-off
(for humans about 50-80 Hz, depending on the mean light level). That is why TV frames (60 Hz interlaced) or computer
displays (now usually >70 Hz) are not seen to be flickering. An extreme consequence of the low temporal frequency
attenuation, is that an image that is held stationary on the retina dissappears. A VLSI retina having similar spatial and
temporal filtering properties was first built at Caltech by Mead and colleagues (Mead, 1989).

At the retina, one begins to see evidence for multiple visual pathways for spatio-temporal information. In cats,
ganglion X-cells have smaller receptive fields and poorer temporal resolution than Y-cells, suggesting that the X channel
carries information important for fine spatial detail, and the Y-cell channel conveys coarse-scale spatial information
quickly. There is a similar distinction in primates, the, so-called magno-cellular (homologous to Y-cells) and parvo-cellular
(homologous to X-cells) cells and pathways.

Human temporal contrast sensitivity functions.
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Fig. 11. Temporal Contrast Sensitivity Function (TSF) for various adapting
fields. Kelly's data from Hart Jr, W. M., The temporal responsiveness of

vision. In: Moses, R. A. and Hart, W. M. (ed) Adler's Physiology of the eye,
Clinical Application. St. Louis: The C. V. Mosby Company, 1987.

Functions of the Chiasm and LGN

The optic chiasm routes neuronal information so that information from corresponding points on the left and right eyes can
come together at cortex for binocular vision, and in particular stereo vision. Typically animals with frontal vision have
nearly complete cross-over, and animals with lateral eyes (e.g. fish) have little or no cross-over. The nervous system has
gone to considerable length to bring information from the two eyes together early on. This suggests that certain kinds of

cortical computations cannot easily be done "remotely", but require close connectivity between neurons, and the resulting
topographic maps.

The neurons of lateral geniculate nucleus do more band-pass filtering, and the cells are characterized by fairly symmetrical
center-surround organization like the ganglion cells. They show even less response to uniform illumination than ganglion
cells. Despite the fact that neurons from the two eyes exist within the same nucleus, no binocular neurons are found in
LGN. We have to wait until cortex to see binocular neurons. The X- and Y-cell division of labor continues with the
so-called parvocellular (with corresponding retina input from P cells in monkeys, or X cells in cats), and the magnocellular
(Y cells or M cells) pathways. Again the experimental measurements are consistent with the idea the the M pathway

carries a fast, but coarse spatial representation of the image to the cortex, while the P pathway carries finer spatial detail
but more slowly.

Although the LGN is often considered a relay station, feedback from cortex suggests possible role of attention mecha-
nisms (see Crick, 1984 for a speculative neural network theory of LGN and reticular function; Mumford, 1991; Sillito et
al., 1994). Although we will bypass a treatment of the superior colliculus, it has an important role is in the control of eye

movements--a highly non-trivial problem requiring coordination of head and eye movements in the context of a con-
stantly changing environment.
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Anatomy and physiology of primary visual cortex

Neurons in the LGn send their axons (the optic radiation) to synapse on layer IV neurons of the primary visual cortex (also
known as area 17 in cat, striate cortex or V1in monkeys and humans). Cortex is anatomically structured in layers, num-
bered from I (superficial) to VI (deep). The striate cortex is laid out as non-linear topographic map with 80% of cortical
area devoted to about 20% of visual field, reflecting the higher acuity of foveal vision. Because of the cross-over at the
optic chiasm, the left visual field (right retina) maps to right hemisphere. In monkey, many of the neurons in layer IV have
receptive field properties similar to those in LGN. However, in striking contrast with receptive field characteristics of
earlier neurons, most cortical cells (other layers of V1) show:

* orientation selectivity

* spatial frequency selectivity, some with quite narrow tuning
* spatial phase selectivity (simple cells)

* binocularity

* motion selectivity

Apart from the spatial frequency selectivity, these properties were discovered in large part by the work over a couple of
decades by Hubel, D. H., & Wiesel, T. N. (see 1968 reference). Hubel and Wiesel won the Nobel prize for this work.
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m Receptive field structure
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There are two main types of cells. The simple cells are roughly linear except for rectification, are spatially and
temporally band-pass, and show spatial phase sensitivity. A first approximation model for simple cell response firing rate
(in impulses/sec) is:

o(w.g), where g is the image vector, w the receptive field weighting function, and o=(-) is a rectifying function (e.g
If[#>0,#,01&).

Both the psychophysical and neurophysiological data could be accounted for, in part, by assuming the visual system
performs a quasi-Fourier analysis of the image, the exact form determined by the receptive field weighting function w.

We've seen how one possible model assumes that the visual system computes the coefficients (or spectrum) of an

image with respect to the following basis set, called a Gabor set (Daugman, 1988). The set {w; } is modeled as:
(242)

{e 202 cosQn(fix + fyy + ¢)}, where i->(fy, fy.9).

We will return to a more detailed discussion of the receptive field models of simple cells later in the section of functions of
the visual cortex. The half-wave rectification operation, o, sets negative values to zero, and is linear for positive values.
The spectrum coefficients are represented by the firing rates of cells whose receptive field weights are represented by the
above basis functions. In actuality, because simple cells behave more like linear filters followed by half-wave rectification,
there should be two cells for each coefficient-- "on" and "off" cells). One difference between this basis set, and the Fourier
basis set (i.e. the optical eigenfunctions) is that this set has a local spatial restriction because of the Gaussian envelope. A
second difference, which has major implications for computation, is that the basis functions are, in general, not orthogonal.

The second major class of neurons is that of complex cells. Like simple cells, complex cells are spatially and
temporally band-pass, show orientation and motion direction selectivity, but are insensitive to the phase of a stimulus
such as a sine-wave grating. Rather than half-wave rectification, they show full-wave rectification. A model for complex
cells would resemble the sum of the outputs of several subunits positioned at several nearby spatial locations. Each
subunit would resemble simple cell with a linear spatial filter followed by a threshold non-linearity. One way of obtaining
the phase insensitivity would be to use subunits with cosine and sine phase receptive fields. The motion selectivity could
be built in with appropriate inhibitory connections between subunits. Full-wave rectification could be built with subunit
pairs that have excitatory and inhibitory receptive fields centers. Both simple and complex cells show contrast normaliza-
tion--an important feature not included in the above simple model. For a discussion of models of simple and complex cells,
see: Heeger, D. J. (1991). Nonlinear model of neural responses in cat visual cortex. In M. &. M. Landy A. (Ed.), Computa-
tional Models of Visual Processing (pp. 119-133). Cambridge, Massachusetts: M.I.T. Press.

A third class of cells are the end-stopped (or "hyper-complex") cells that have an optimal orientation for a bar or
edge stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond
it. It has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987).

But things aren't as necessarily as neat as they at first seem. "Hyper-complex" is seen as less of class, and instead
cells can show "end-stopping". Further, see: Melcher and Ringach (2002) for a discussion of the simple/complex cell
distinction.

B Columnar structure
In the cortex, we see for the first time binocular cells. The cells of the primary cortex are organized into columns running

roughly perpendicular to the surface in which cells tend to have the same orientation preference and degree of binocular-
ity. A "hypercolumn" is a group of columns spanning all orientations and both eyes
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The receptive field organization of cortical cells is modifiable by experience. A number of models of self-organizing
neural networks have been developed to account for this (Von der Malsburg, 1973; Bienenstock et al., 1982; Kohonen,
1981; and Linsker, 1988). Below we consider how efficient coding of natural image predicts how receptive field structure
(Olshausen and Field, 1996; 2004).

Embedded in the cortical hypercolumns are cytochrome oxidase blobs in which are found opponent color cells that seem
to lack strong orientation selectivity (Livingstone, M. S., & Hubel, D. H., 1984; Livingstone, M. S., & Hubel, D. H.,
1987).
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Functions of Primary Cortex

H Local measurements

Basic idea:

V1 cortical cells measure local orientation-specific image contrast differences, that are correlated with spatial
changes in surface/object depth, material (texture) and view-object and object-object changes (motion). Our challenge in
the second half of the course will be to understand how local measurements can be used for global inference--e.g. as in
object recognition.

H Stereo, or disparity measurements

As mentioned earlier, primary cortex brings together information from the two eyes in single neurons. This
information is important for coordinated eye movements and stereo vision. Stereovision depends on the slight image
differences, called disparities, that occur as a consequence of the two eyes having different views of the 3D world. Cells
can be binocular without being sensitive to disparity. Although V1 cells are predominantly binocular, it was at first thought
that disparity selectivity did not arise until V2 (Hubel and Wiesel, 1970). However, there is evidence for disparity selective
cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Disparity selectivity is a trivial task for single bar stimulus (in a
uniform background), and it wasn't until relatively recently that neurons were found that effectively solve the problem of
false matching (Poggio and Talbot, 1981). One possible algorithm for stereo vision is discussed here: Poggio, T. (1984).
Vision by Man and Machine. Scientific American, 250, 106-115. Stereo vision has received a lot of attention in both
computer and biological vision over the past several decades (Cumming, B. G., & DeAngelis, G. C. , 2001).

H Motion measurements

The directional selectivity of cells in striate cortex provide a form of early motion detection, akin to that described for
invertebrate and rabbit peripheral vision. This detection is only local and thus ambiguous. Cortical cells suffer from the
"aperture problem", and further computation is required to disambiguate object motion. Cortical cells are also selective for
speed (Orban et al., 1983).

Both the motion selectivity and binocularity suggest a general hypothesis for cortical function: it links information likely
to have a single environmental cause for subsequent extra-striate processing. We will return to the computational theory of
motion detection later.



12.SpatialCodingEfficiency.nb 11

m Spatial frequency filtering: Psychophysics and physiology

Earlier, we looked at the psychophysical evidence for spatial frequency filtering in the experiment of Campbell and
Robson, and the evidence for scale-invariance of the filters in the ideal-observer experiment of Kersten. These two studies
represent a small fraction of the psychophysics that has explored the properties of spatial frequency channels in human
vision. Both adaptation and masking studies have also been used to infer properties of human spatial filters. The results of
masking, adaptation, and other psychophysical studies of spatial and orientation frequency selectivity in human vision are
surprisingly consistent in suggesting the basic form for a cortical basis set for images.

The basis set has to be discretized, and leaves several free parameters. Most models of detection and masking get
by with about 6 spatial frequencies, about 12 orientations (specified by the ratio of horizontal and vertical spatial frequen-
cies), and two phases (cosine and sine) at each retinal location. A subset of neurons representing a particular spatial
frequency bandwidth makes up a spatial frequency channel. (Although there is neurophysiological evidence for pairs of
V1 neurons having receptive fields with 90 deg phase shifted relative to each other, there is evidence against absolute
phase--i.e. there is not a predominance of edge or bar type receptive fields. See Field and Tolhurst). One parameter still left
unspecified is the standard deviation or spread of the Gaussian envelope. If large, this basis set approaches that of regular
and global Fourier analysis. The psychophysical data suggest that the standard deviation be such that the Gaussian enve-
lope is about one cycle (at the 1/e point) of the sine wave. One cycle corresponds to about 1.5 octaves spatial frequency
bandwidth (an octave measure of width is: log to the base two of the ratio of the high to low frequencies.)

Why would the visual system have such a representation that combines orientation and spatial frequency selectiv-
ity? We have two types of explanations. One is that encoding over multiple spatial scales is important for subsequent
processing that may involve edge detection, texture measurements, or stereoscopic matching, and so forth. Analogous
pyramid schemes have been developed for computer vision. (See Adelson, E. H., Simoncelli, E., & Hingorani, R., 1987).
The second explanation is in terms of economical or efficient encoding which we return to below (Simoncelli and
Olshausen, 1999).
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In short, the image processing functions from eye to cortex are:

Retina
spatio-temporal filtering attenuates low frequencies, wavelength/color coding
Chiasm
begins grouping information from nearby points in the world to nearby biological locations
Lateral geniculate nucleus (Ign)
more spatio-temporal filtering. groups, but doesn't combine information from two eyes.
Primary visual cortex (V1, striate, 17)
Brings together local image measurements--information that belongs together
columnar structure
binocular vision and stereopsis
motion
edge & bar detectors
Spatial filtering by: Simple, complex, end-stopped cells
Why spatial filtering?
cortical basis set and efficient image representations

edge detection

I Efficient representation of information & neural networks

We'll first consider the single-channel model and retinal coding.

Lateral inhibition is pervasive in early visual coding across many species of animals, from invertebrates like the horseshoe
crab to primates. We would like to know why, and thus come up with a computational theory for lateral inhibition. We
already saw an argument for lateral inhibition as a front-end for edge detection. It is also a means to reduce the dynamic
range--but is there a principled way of reducing the dynamic range while avoiding discarding information? Let’s look at
possible explanation is in terms of efficient encoding.

The retina needs to encode a large number of levels of light intensities into a small number of effective neuronal
levels. A quick calculation based on Poisson statistics shows that in about a 1/5 second, there are about 200 reliably
distinguishable light levels given a potential (huge) range of between 10210 and 10A(-2) photons/sec/receptor at 555 nm.

A similar calculation based on Poisson statistics for neural discharge indicates only about 14-16 levels can be
encoded in 1/5 of a second. (Ganglion cell discharge is in general modeled by a Gamma distribution on inter-spike
intervals, and Poisson statistics are a convenient approximation that corresponds to a first order gamma distribution;
Gerstein, 1966; Robson and Troy, 1987.) We can make a calculation based on a first order Poisson approximation:
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e M AADF

p(k spikes in Ar) = x

(A=average rate, M(t)=f(intensity or contrast)

Because of the refractory period, the maximum rate is less than 1000 Hz. In general, it is much lower for ganglion cells,
and 250 would be a liberal upper bound.

250 Hz => 50 spikes in 1/5 sec.
Working down in steps of 1 standard deviation produces about 14 levels. The big challenge is to go from 200 levels to 14
Log,200 -> Log, 14, with minimal loss of information.

This would require squeezing 7.6 to 3.8 bits/cone. Of course, we don't have to handle this whole range for a given scene
and using a single mechanism. We've seen how a duplex receptor system helps, and the role of a sigmoidal non-linearity.
We've also noted, this is not simply a matter of introducing a non-linearity--this will not work because the variability is the
ultimate limit to resolution and it would still remain.

What tricks that could be used to handle the range problem?

It turns out that for an arbitrary image ensemble, one cannot construct a reversible coding scheme that could squeeze the
number of bits down. But for an image ensemble with some statistical structure or redundancy, there is hope. What is
meant by statistical structure or redundancy?

In a 128 x 128 x 4 bit graphics display, there are 2A(128*128*4) or about 10719,728 possible pictures. Imagine a
machine that started iterating through them. The vast majority would appear unnatural and look like TV "snow" or visual
noise. Only a near infinitesmal small fraction would correspond to natural images...i.e. are likely to occur. So what is this
fraction? Some years ago, I estimated an upper bound on this fraction using theoretical results from Claude Shannon's
famous guessing game for the predictability of written English text (Kersten, 1987). The result was that number of
possible meaningful images < 1026905 . If you could sit for multiple eons of time and view all the 10419,728 pictures on
your 128 x 128 x 4 bit computer display, about one out of every 10212,823 pictures and your brain would "click" and you
would say "aha, that one looks natural." Why is this? One fundamental reason is that there are correlations between
neighboring pixel intensities. Correlations are one simple and basic measure of redundancy in images.
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We need tools for measuring correlations, and redundancy in images.

I 2nd order statistics

Example of the idea: a non-isotropic "1-D random-walk" image ensemble

m 1-D Brownian

In[55]:= step := 2 (Random[Integer, 1] -1/2);
next[x ] :=Mod[x, size] +1;

In[57]:= size = 64;
brown = N[Table[128, {i, 1, size }, {i, 1, size }]];
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In[59]:= For[j =1, j < size, j++,
For[i=1, i <size, i++,
If[Random[] > 0.5, brown[[next[i], j]] = brown[[i, j]] + step,
brown[[next[i], j]] = brown[[i, j]] - step];
If[brown[[i, j]] > 255, 255];
If[brown[[i, j]] <1, 0];
1i
1i

In[60]:= | ListDensityPlot [brown, Mesh - False];

0 10 20 30 40 50 60

Along a horizontal line, the intensities are quite random--the samples were drawn independently. The gray-levels from
pixel to pixel are not correlated:

In[61]:= ListPlot [brown[[32]], PlotJoined » True];

140
135
130
125
120

10 20 30 40 50 60

In contrast, vertical lines show a degree of regularity:
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In[62]:= ListPlot [Transpose[brown] [[32]], PlotJoined » True];

128
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120
118

10 20 30 40 50 60

In[63]:= histobrown = histogram[brown];

ListPlot [histobrown, PlotStyle » PointSize[0.015], PlotRange » {0, 0.1}];
entropy[histobrown]
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Out[65]= 4.54018

m Efficient encryption code for 1-D brownian images

In[66]:= codebrown = Table[0, {size}, {size}];
For[j =1, j < size, j++,
For[i=1, i <size, i++,
codebrown[[i, j]] =brown[[next[i], j]] - brown[[i, j]] + 128;
1:
1i
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In[68]:= ListDensityPlot [codebrown, Mesh -» False];
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In[69]:= ListPlot[codebrown[[32]], PlotJoined -» True];

129
128
127
126

125

10 20 30 40 50 60
In[70]:= histocodebrown = histogram[codebrown];
ListPlot[histocodebrown, PlotStyle » PointSize[0.015],

PlotRange » {0, 1}];
entropy[histocodebrown]

1 .

%

50 100 150 200 250

Out[72]= 0.999569
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Second order statistics

H Autocorrelation function

ListCorrelate[ker, list] computes ). K, a,... Autocorrelation corresponds to K, — a,: ., a, dgyr.

Analyze the correlation between pixel gray levels for each line, and then average them:

m Read in an image, say face256

In[73]:= face256 = granite;

In[74]:= autoface2 = Table[0, {width}];
For[i=1, i <width+1, i++,
autoface2 += ListCorrelate[face256[[i]], face256[[1i]], width/2]];

In[99]:= ListPlot[autoface2 /Max[autoface2], PlotJoined - True,
PlotRange -> {.95, 1}];

10 20 30 40 50 60
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m Covariance matrices, and the outer product

Recall that the covariance is: Cov [X, Y] = E[ [X - tux] [Y - uy]]. The correlation gives a dimensionless measure of

covariation: p [X, Y] = %
X Oy

Let X={x; ...} and Y = {y; ...} be vectors. The average of the products x; y; or (X; — Lix;) (¥j - My, ) give mea-
sures of how well x; and y; predict each other. The latter collection of average products is called the covariance matrix:

CovX, Y] =E[(X; ~tx;) (¥5 -ty )] = ELIX-px] [Y-ur]")

where XY7is the notation for outer product of X and Y. Mathematica for the outer product is: Outer[Times, X,Y]. The
outer product takes two vectors and produces the matrix whose entries are all possible pair-wise products of the elements
of the two vectors. Contrast the outer with the inner (or dot) product which returns a scalar given two input vectors. Given
M samples {X*, Y*}, we can estimate the covariance matrix as: iZﬁl [X* — ux][Y* — py]” .-When X=Y, an covariance
matrix is called an autocovariance matrix, and similarly for autocorrelation. A covariance matrix is a symmetric matrix,
and thus has orthogonal eigenvectors with real eigenvalues--a property that will become useful later.

m Multivariate gaussian

The multivariate gaussian is a generalization of the gaussian distribution to higher dimensions, in which the standard
deviation is replaced by the covariance matrix. The multivariate gaussian plays a central role in statistics, and provides a
crude approximation as a generative model for natural images. The probability of vector x of dimension p is given by:

1 T y-1
p(x) = ﬁ? ¢ 2T ETOT (here 12 = Det[Z].

where p is the vector mean, and X is the covariance matrix. Mathematica has an add-in package that extends the normal
routines to the multivariate case:

A two-dimensional example.
In[91]:= z {{1, .6}, {.6, 1}};

u = {1, 1};
ndist = MultinormalDistribution[u, = ];

In[94]:= | ContourPlot [PDF [ndist, {x, y}1, {x, -1, 3}, {y, -1, 3}1;

| (@

0

-1
-1 0 1 2 3

Going to higher dimensions, an exponential drop-off in correlation can be modeled as a covariance matrix with diagonal
elements equal to 1, and an exponential drop-off away from the diagonal. So the first row would be:
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in82]:== | rowl[p ] := Table[p®, {i, 0, 15}];

Later we show how the covariance matrix can be used to find a new basis set for images such that when we project images
onto the basis elements, the projections are no longer correlated. One way to do this is through Principal Components
Analysis or PCA.

But first, let's look at some early and recent research that has sought to explain receptive field structure in terms of redun-
dancy reduction.

I Efficient coding by the retina and V1

Predictive coding & retina

Srinivasan et al. (1982) were the first to make quantitative predictions of how the retina makes use of inherent
spatial and temporal correlations between light intensities found in natural images to reduce the output range required to
send information about images. They measured the autocorrelation function and showed that it could be fit with an exponen-
tial curve.
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m Autocorrelation measurements & model

autocorrelation
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H Linear neural network

They assumed a linear model:
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H The result

Given the autocorrelation function, and the linear model, R; = 3, wj; Ly = L; — X7, y Hj; L;, they were able to show that the

receptive field weights that minimized E(R;?) predicted a "center-surround" receptive field:

N =41
A
N
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i
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il
n
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g

CEE I 2] 5]

rr_'cnpt.or array

They also showed that one would expect the inhibitory side lobes to get smaller at low light levels.
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vi

m Olshausen & Field: Primary cortex

We might expect something like Fourier analysis of the image to result in efficient coding because of the close relation-
ship between Fourier rotations and Karhunen- Loeve transformations (or Principal Components Analysis, see below) (e.g.
Appendix A, Andrews, 1983). Fourier coefficients for natural images tend to be uncorrelated. Some work has been com-
pleted toward a functional explanation for the orientation and spatial frequency tuning properties of cortical receptive
fields based on the statistics of natural images (Field, 1987; Snyder), but the story is far from complete. Barlow has argued
that a decorrelated representation of sensory information is important for efficient learning (Barlow, 1990).

There has been progress studying the relationship between self-organizing models of visual cortex, and efficient
coding of image information. For more on this, see: Linsker, R. (1990) and Barlow, H. B., & Foldiak, P. (1989). Linsker's
computational studies show, for example, that orientation tuning, and band-pass properties of simple cells can emerge as a
consequence of maximum information transfer (in terms of variance) given the constraint that the inputs are already
band-pass, and the receptive field connectivity is a priori limited.

We will see in the next lecture that cells in the visual cortex send their visual information to an incredibly complex,
and yet structured collection of extra-striate areas. Any hypothesized function of striate cortex must eventually take into
account what the information is to be used for. In the next lecture, we will give a quick overview of extra-striate visual
cortex, and introduce the computational problem of estimating scene properties from image data.

In 1996, Olshausen and Field showed that one could derive a set of basis functions that have the same characteristics as the
ensemble of visual simple cells in primary visual cortex by requiring two simple constraints:

1) One should be able to express the image as a weighted sum of the basis functions.

2) The total sum of activity across the ensemble should, on average, be small. This latter constraint is called "sparse
coding". That is, a typical input image should activate a relatively small fraction of neurons in the ensemble.
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I Principal components analysis

Introduction to PCA

Principal components analysis (PCA) is a statistical technique that is applied to an ensemble of n-dimensional measure-
ments (vectors or in our case images). To do PCA, all one needs is the autocovariance matrix and a good PCA algorithm.
Good because images are big enough (p=mxn), and the covariance is much bigger (p/2).

PCA finds a matrix that transforms the input vectors into output vectors, such that output elements are no longer correlated
with each other. There is more than one matrix that will do this however, and PCA find the matrix which is a rigid rotation
of the original coordinate axes, so it preserves orthogonality. (The Fourier transform is also a rotation.) Further, the new
coordinates can be ordered in terms of variance. The new coordinates turn out to be eigenvectors of the covariance matrix.
The directions or eigenvectors with the biggest variances are called the principal components. So the dominant principal
component has the most variance, and so forth. For data that are highly redundant, PCA can be used to eliminate dimen-
sions that account for little of the total variance.

PCA is important in computational models of visual processing (See Wandell, pages 254-258). For example, PCA has
been used to account for and model:

opponent color processing

visual cortical cell development

efficient representation of human faces

face recognition given variability over illumination
internal model of objects for visual control of grasping

There has been considerable growth in the area of theoretical neural networks and PCA. An introduction to some of the
ideas is given in the optional section below.

Standard computer statistical packages provide the tools for doing PCA on large data sets.Below we try to provide intu-
ition and background into the computation of principal components.

Statistical model of a two-variable input ensemble

Consider a two variable system whose inputs are correlated. The random variable, rv, is a 2D vector. The scatter plot for
this vector has a slope of Tan[theta] = 0.41. The variances along the axes are 4 and 252 (.0625). gprincipalaxesisa

graph of the principal axes which we will use for later comparison with simulations. ContinuousDistributions.m
is a Mathematica package that provides routines for sampling from a Gaussian (or Normal) distribution, rather than the
standard uniform distribution that Random[] provides.
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In[1]:=

Out[2]=

ndist = NormalDistribution[0,1];theta = Pi/8;
bigvar = 4.0; smallvar = 0.25

alpha = N[Cos[theta]]; beta = N[Sin[theta]];
rv :=

{bigvar x1 alpha + smallvar yl beta,

bigvar x1 beta - smallvar yl alpha}

/.{x1-> Random[ndist],yl-> Random[ndist]};

gprincipalaxes = Plot[{x beta, x (-1/beta)},
PlotRange->{{-4,4},{-4,4}},
PlotStyle->{RGBColor[1,0,0]},
AspectRatio->1,DisplayFunction->Identity];

{xl_4l4}l

0.25

General::spelll :
Possible spelling error: new symbol name "beta" is similar to existing symbol "Beta". More...

Syntax::sntxf: "/" cannot be followed by ".{x1-> Random[ndist],yl->
Random[ndist]};". More..

x1 and y1 are correlated. Let's view a scatterplot of samples from these two correlated Gaussian random variables.

In[5]:=

npoints = 200;
rvsamples = Table[rv,{n,1l,npoints}];

gl = ListPlot[rvsamples,PlotRange->{{-4,4},{-4,4}},
AspectRatio->1,
DisplayFunction->Identity];

Show[gl,gprincipalaxes, DisplayFunction-> $DisplayFunction];
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Standard Principal Components Analysis (PCA)

Let E[] stand for the expected or average of a random variable, . The covariance matrix of a of vector random variable, x,
is: E[ [X-E[X]][X-E[X]]T ]. Let's compute the autocovariance matrix for rv. The calculations are simpler because the

average value of rv is zero. As we would expect, the matrix is symmetric:

autolist = Table]
Outer[Times,rvsamples[[i]],rvsamples[[i]]],
{i,Length[rvsamples]}];
MatrixForm[auto=
Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]
Clear[autolist];

3.13451 1.24297
1.24297 0.5646

The variances of the two inputs (the diagonal elements) are due to the projections onto the horizontal and vertical axis of
the generating random variable.

Now we will calculate the eigenvectors or the autocovariance matrix

MatrixForm[eigauto = Eigenvectors[auto]]

0.927025 0.375
-0.375 0.927025

Remember that the rows of a symmetric matrix are orthogonal. You can check that.

Let's graph the principal axes corresponding to the eigenvectors of the autocovariance matrix together with the scatterplot
we plotted earlier.

gPCA =

Plot[{eigauto[[1,2]]/eigauto[[1,1]] x,

eigauto[[2,2]]/eigauto[[2,1]] x},
{x,-4,4}, AspectRatio->1,
DisplayFunction->Identity,
PlotStyle->{RGBColor[1,0,0]}];
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Show[gl,gPCA,DisplayFunction->$DisplayFunction];

The eigenvalues give the ratio of the variances of the projections of the random variables rv[[1]], and rv[[2]] along the
principal axes:

I eigvalues = Eigenvalues[auto]

I {3.63731, 0.0617931}

The projections along the principal axes are now decorrelated. We can see this by calculating the autocovariance matrix
of the projected values:

autolist =

Table[

Outer[Times,eigauto.rvsamples[[i]],
eigauto.rvsamples[[i]]],
{i,Length[rvsamples]}];

MatrixForm[Chop[

Sum[autolist[[i]],
{i,Length[autolist]}]/Length[autolist]]]
Clear[autolist];

3.63731 0
0 0.0617931

Note that the off-diagonal elements (the terms that measure the covariation of the transformed random variables) are zero.
Further, because the variance of one of the projections is near zero, one can in fact dispense with this component and
achieve a good approximate coding of the data with just one coordinate.
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PCA and natural images

H Break a large image into a series of subimages.

The idea is that each subimage will be used as a statistical sample. We compute the outer product of each, and then
average all 16 to get an estimate of the autocovariance matrix.

| << Statistics MultiDescriptiveStatistics"
| nregions = 16; swidth = width /nregions;

subface = Table[Take[granite, {i*swidth + 1, i * swidth + swidth},
{j * swidth + 1, j * swidth + swidth}], {i, O, nregions - 1},
{j, 0, nregions -1}];

subfacelist = Table[0.0, {256}];
Table[subfacelist[[i+16* (j-1)]] = N[Flatten[subface[[i, j]1]1]1,
{i, 1, 16}, {3, 1, 16}];

Subtract off the mean.

subfacelist2 = Table[subfacelist[[i]] - Mean[subfacelist[[i]]],
{i, 1, 256}1;

m Calculate the autocovariance matrix

temp = Table[0.0, {256}, {256}];
For[i =1, i < Dimensions[subfacelist] [[1]], i++,
temp = N[Outer[Times, subfacelist2[[i]], subfacelist2[[i]]]] + temp;
1;
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ListDensityPlot[temp, Mesh - False];

250
200
150
100

50/

B 7

0 501005@0®@50

m Calculate the eigenvectors and eigenvalues of the autocovariance matrix

eigentemp = Eigenvectors[temp];
eigenvaluestemp = Eigenvalues[temp];
ListPlot [Chop[eigenvaluestemp]];

500000
400000
300000 *
200000F

kY

100000 \\\\\~_‘

50 100150200250

m Display the first 32 eigenvectors as "eigenpictures"

Table[ListDensityPlot [Partition[eigentemp[[i]], 16], Mesh -» False],

{i, 1, 32}];
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I How good is a 2nd order model of natural images?

Let's construct a 2nd order generic generative statistical model of images and see what the samples look like.
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Random Fractals

Random fractals are a crude but good statistical models for the amplitude spectra certain classes of natural images. Ran-
dom fractals can be characterized by the fractal dimension D (3<D<4) and amplitude spectrum, 1/( 2+ fyz)A(4-D). The
amplitude spectrum is a straight line when plotted against frequency in log-log coordinates. The condition Iff ] is used to
include a fudge term (1/(2)A(q)) to prevent blow up near zero in the Block[ ] routine later.

size = 64;
hsize = size/ 2;
fwidth = 2 xhsize; hfwidth = fwidth/ 2;

q=2.5;
LogLogPlot [If[ (i #0 || j#0), 1/ (i*xi+0x0)"(q), 1/(2) " (a)],
{i, 0, hfwidth-1}];

0.0001

1.x10°°

m Here is a function to make a low-pass filter with fractal dimension D. (D, here should be between 3 and
4). Note that we first make the filter centered in the middle, and then adjust it so that it is symmetric

with respect to the four corners.

fractalfilter[D_] :=
Block[ {q,i,j,mat},
q=4-D;
mat = Table[If[(i != 0 || j!= 0),

1/(i*i + 3*3)~(@), /()" (@)1,
{i,-hfwidth,hfwidth-1}, {j,-hfwidth,hfwidth-1}];
mat = RotateRight[mat, {hfwidth, hfwidth}];
Return[mat];

1;
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ListDensityPlot [RotateLeft[fractalfilter[3.5], {hfwidth, hfwidth}],

Mesh - False];

0 10 20 30 40 50 60
Here is the amplitude spectrum plot for a random fractal image:

randomspectrum = Abs [temp = Fourier [Table[Random[], {width}, {width}]]];

randomphase = Arg[temp] ;

ffilt = fractalfilter[3.5] randomspectrum;
ListDensityPlot[RotateRight[ffilt, {hfwidth,hfwidth}], Mesh->False,

Frame->False];
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m Here is a random fractal image, with D = 3.2

ListDensityPlot[Chop|[
InverseFourier|

fractalfilter[3.2] randomspectrum Exp[I randomphase]]],
Mesh->False,Frame->False];

Can one do better? Yes. See the sample below from the paper by: Zhu, S. C., & Mumford, D. (1997). Prior Learn-
ing and Gibbs Reaction-Diffusion. IEEE Trans. on PAMI, 19(11), 1236-1250.
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I Next time

m Edge detection

I Appendices

Some exercises on 1rst and 2nd order spatial filter statistics

For a discussion of 1rst and 2nd order spatial filter statistics, see: Simoncelli and Olshausen, 1999.

Initialization stuff

Off [General::spelll];
DeclarePackage["Statistics DataManipulation™", {"BinCounts"}];
<< Statistics DescriptiveStatistics™

Kurtosis

Some useful functions: scale256, histogram, argmax

scale256[image_] := Module[{a, p},
a 255 / (Max[image] - Min[image]);
B = -a Min[image];
Return[a image + f8];];
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histogram[image_] := Module[{histx},
histx = BinCounts[Flatten[image], {0, 255, 1}];
Return[N[histx /Plus @@ histx]];

1;

| argmax[x ] := Position[x, Max[x]][[1, 1]];

Input image: " alpine.jpg" is a 256x256 array of gray-levels

| alpine = Import [Experimental FileBrowse [False]];

alpine = alpine /. Graphics - List;
alpine alpine[[1, 1]1];

size = Dimensions|[ alpine] [[1]];

hsize = size/ 2;

ListDensityPlot[ alpine, Mesh - False];

250(8@
2008
150
100];

50

m Problem 1: Histogram of alpine256

Expand alpine so that the minimum and maximum gray-levels are O and 255 respectively. Call it alpine256. Plot the

histogram of alpine256.

H Answer 1:

alpine256 = scale256[ alpine];
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hist0 = histogram[ alpine256];
g0 = ListPlot[histO];

0.014¢
0.012¢

0.01¢
0.008¢
0.006¢
0.004}
0.002¢

. A, o -
/ ‘\.""M".'.: ‘ ‘ \"': ‘ .\q‘. <

cumulhistO

50 100 150 200 250

= FoldList[Plus, histO[[1]], histO];

gl = ListPlot[255 * cumulhistO];

250
200
150
100

50

/

i

50 100 150 200 250

H Problem 2: Histogram of the convolution of sgabor[x,y] with alpine256[x,y] = sgabor ®alpine256

Define an 8x8 pixel sine-phase gabor filter:

sgabor[x_,y_.fx_,fy_,sig_J:=

N[Exp[(-xA2-yA2)/(2 sig¥sig)] Sin[2 Pi (fx x+fy y)]]; .

where fx = fy = 1/8. And sig =4.

g\

Q.5.1m15

Convolve alpine256 with this filter. As with alpine, scale the resulting image so that [min,max] = [0,255]. Plot the histo-
gram of the resulting "neural image".
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m Answer 2:

Gabor filter

sgabor[x_, y_, fx_, fy_, sig ] :=
N[Exp[(-x"2-y"2) / (2sig*sig)] Sin[2Pi (fxx+fyy)]];

fsize = 16;

filter = Table[sgabor[ (i - fsize/2), (j - fsize/2),1/8, 1/8, 4],
{i, 0, fsize}, {j, O, fsize}];

filter = Chop[filter];

ListDensityPlot[filter, Mesh » False, PlotRange » {-1, 1}];

General::spell :
Possible spelling error: new symbol name "fsize" is similar to existing symbols {hsize, size}. More...

b

02.557.802.55

Convolution

falpine = ListConvolve[filter, alpine256];
falpine256 = scale256[falpine];

| ListDensityPlot[falpine256, Mesh -» False];

200
150 N
1008

50

0 50 100 150 200

Histogram



42

12.SpatialCodingEfficiency.nb

histl = histogram[falpine256];

a = Max[histl];

u argmax [histl];

s = 4;

gl = ListPlot[histl, PlotRange -» {{0, 255}, {0, a}},
DisplayFunction » Identity];

g2 = Plot[a Exp[-(x-u) "2/ (2s"2)], {x, 0, 255},
PlotRange -» {{0, 255}, {0, a}}, DisplayFunction » Identity];
Show[gl, g2, DisplayFunction - $DisplayFunction];

S

50 100 150 200 250

cumulhistl = FoldList[Plus, histl1l[[1]], histl];
gll = ListPlot[255 * cumulhistl];

H Problem 3: Excess kurtosis: alpine256 vs. sgabor ®alpine256

Skewness and kurtosis are statistics describing the shape of a distribution. Skewness is a measure of asymmetry. Kurtosis
compares the concentration of data around the peak to the tails versus the concentration in the flanks.

Kurtosis is calculated by dividing the fourth central moment by the square of the variance of the data. KurtosisEx:"
cess is shifted so that it is zero for the normal distribution, positive for distributions with a prominent peak and heavy
tails, and negative for distributions with prominent flanks.

Calculate excess kurtosis for alpine256 and falpine256.
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m Answer 3:

KurtosisExcess[Flatten[N[alpine256]]]
KurtosisExcess[Flatten[N[falpine256]]]

| 0.0326037

| 13.2636

2nd order statistics spatial filter
H Problem 5: Joint histogram of two overlapping orthogonal filters

Hm Answer 5:

fsize = 16;

filter2 = Table[sgabor|[ (i - fsize/2), (j - fsize/2), 1/8, -1/8, 4],
{i, 0, fsize}, {j, O, fsize}];

filter2 = Chop[filter2];

ListDensityPlot[filter2, Mesh » False, PlotRange -» {-1, 1}];

H Convolution

falpineB = ListConvolve[filter2, alpine256];
falpine256B = scale256[falpineB];
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| ListDensityPlot[falpine256B, Mesh -» False];

200
1501
100

50

m 1D Histogram

hist2 = histogram[falpine256B];

a Max[hist2];

u argmax [hist2];

s = 4;

g3 = ListPlot [hist2, PlotRange » {{0, 255}, {0, a}},
DisplayFunction -» Identity];

Non-gaussian

g2 = Plot[aExp[-(x-u) "2/ (2s"2)], {x, 0, 255},
PlotRange -» {{0, 255}, {0, a}}, DisplayFunction » Identity];
Show[g3, g2, DisplayFunction - $DisplayFunction];

0.1
0.08
0.06
0.04
0.02

50 100150 200 250

m 2D histogram

temp = Transpose [ {Flatten[falpine256], Flatten[falpine256B]}];
twoDhist = BinCounts[temp, {0, 255, 1}, {0, 255, 1}];
twoDhist2 = Map[If[# == 0, 0, Log[#]] &, twoDhist, {2}];
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ListDensityPlot [twoDhist2, Mesh - False];

250

200

150

100

50

0

0 50 100 150 200 250

ListContourPlot [twoDhist2, ContourShading -» False, Contours - 10];

Neural networks and principal components

m Neural network model using Hebb together with Oja's rule for extracting the dominant principal

component

Oja, E. (1982). A simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology, 15, 267-273.

Consider the following linear neural network. The input and output values are represented by vectors X, and y respectively.
The connection weights are represented by matrix Q.

2
P
X y
AN

We will combine the outer product form of Hebb's rule, together with Oja's modification. Without Oja's rule, the Hebb rule

does not place a limit on the size of the weights. Recall that Oja's rule constrains the sum of the squares of the weights to
approach 1. We will set the intial values of the weight matrix to random values between 0 and 1.
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npoints = 400; pl = {}; a = 0.01;

size = 2;
Q0 = Table[Random[], {size}, {size}];

Note that a space in Mathematica between two expressions does an element by element multiplication. We use this
notation as economical way of writing Oja's rule. An example is:

MatrixForm[{{a,b},{c,d}} {x,y}]

a x b x
cy dy

Note that this different from standard matrix multiplication.

For[i=1,i<=npoints,i++,
X =rv; v = 0.%;
0 =0+ o (Outer[Times,y,x] - Oy V¥);
If[Mod[i,5]==0,
pl = Join[pl,{{Q[[1,2]11/Q[[1,1]1], Q[[2,2]1/Q[[2,1]]1 }}11;

1;

Let's plot the slopes of projection axes as a function of iterations. We've sampled every 5Sth value, using Mod[i,5], and
stored it in p1.
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ListPlot[Map[#[[2]]&,pl], AxesOrigin->{0,0}, PlotJoined->True,
DisplayFunction->Identity,
PlotStyle->{RGBColor[0,.5,0]1}1];

ListPlot[Map[#[[1]]&,pl], AxesOrigin->{0,0}, PlotJoined->True,
DisplayFunction->Identity,
PlotStyle->{RGBColor[0,0,1]}];

Show([%,%%, DisplayFunction->$DisplayFunction];

o O O o

et

20 40 60 80

There is some random fluctuation in the weights. We can obtain more stability by having a timeconstant over which the
Hebbian term and the variance of y are averaged.

We can see how well the coordinate transformation fits the principal axes of a sample scatter plot:

gnetwork = Plot]|
{s pl[[Length[p1]]1][[1]], s pl[[Length[pl]1]11[[2]]},
{s, -4, 4}, PlotRange->{{-4,4},{-4,4}},AspectRatio->1,
DisplayFunction->Identity];

Show[gnetwork,gl,DisplayFunction->$DisplayFunction];

=N W
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You can verify that the network does a good job of extracting the principal component. Recall that the slope for the
population distribution is Tan[theta]:

| N[Tan[theta]]
I 0.414214

The only problem with this network is that having two output neurons is redundant--they both pull out the same principal
component--the dominant axis. The slopes for both are:

| pl[[Length[pl]]]

I {0.400705, 0.400705}

H A generalization of Oja's rule for extracting all of the principal components with a "Neural network"

(Sanger, 1989)

Sanger, T. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network.
Neural Networks, 2, 459-473.

We will use the same network as in the above example. However, the learning rule will be asymmetric. The generalization
of Oja's term is given by: LT Outer[Times,y,y]).Q, where LT is a lower triangular matrix. The entries above the
diagonal are all zero, and the entries below and including the diagonal are one.

qH
X1 > y1

9z,
92

q22
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size = 2;
LT = Table[If[i>=j,1,0],{i,size},{]j,size}];

npoints = 1200;
pl = {}; a =0.1;

Q0 = Table[Random[], {size}, {size}];

For[i=1,i<=npoints,i++,
X =rv; ¥y = 0.%X;
deltaQ = (Outer[Times,y,x] - (LT Outer[Times,y,y]).0Q);
0 =0+ a deltaQ;
If[Mod[i,1]==0,
pl = Join[pl,{{Q[[1,2]11/Q[[1,111, Q[[2,2]11/Q[[2,11] }}11;

ListPlot[Map[#[[2]]&,pl], AxesOrigin->{0,0}, PlotJoined->True,
DisplayFunction->Identity,PlotStyle->{RGBColor[0,.5,0]}];
ListPlot[Map[#[[1]]&,pl], AxesOrigin->{0,0}, PlotJoined->True,
DisplayFunction->Identity,PlotStyle->{RGBColor[0,0,1]}1];
Show([%,%%, DisplayFunction->$DisplayFunction];

ll II ll |
N L ‘ ‘ ‘

0 400I 600 800 1000

Let's plot up the transformation axes of the network and compare them with the principal component axes:
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gnetwork = Plot[
{s pl[[Length[p1]]][[1]], s pl[[Length[pl]]1[[2]]1},
{s, -1, 2}, PlotRange->{{-4,4},{-4,4}},AspectRatio->1,
DisplayFunction->Identity];
Show[gnetwork,gprincipalaxes,DisplayFunction->$DisplayFunction];

4

3
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