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Primary visual cortex: anatomy, 
physiology, and functions

 

1.0 Outline

 

• Overview of anatomy from eye to cortex
chiasm
lateral geniculate nucleus
primary visual cortex (V1, striate, 17)

anatomical organization
simple, complex, end-stopped
model of simple cells

• Functions of primary visual cortex
binocular vision and stereopsis
motion
spatial frequency filtering

• Spatial frequency filtering
psychophysical evidence
neurophysiological evidence
Why spatial filtering?

cortical basis set and economic representations
edge detection

 

2.0 Spatial frequency analysis in 
visual cortex and its role in edge 

 

detection.

 

This lecture continues the topic of spatial frequency analysis in visual 
cortex and its role in edge detection. In order to set this topic in a general con-
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text of early biological visual processing, we briefly review some anatomy 
and functional physiology of the visual pathway from the retina to the cortex 
itself.

 

2.1 Pathways from eye-to-cortex

 

         The primate retina has about 10

 

7

 

 cones that send visual signals to the  
optic nerve via about 10

 

6

 

 ganglion cells.  The optic nerves from the  two eyes 
meet at the optic chiasm where about half of the fibers cross over and  the oth-
er half remain on the same side of the underside of the brain. Before  synaps-
ing in the lateral geniculate nucleus, about 20% of these fibers that  now 
comprise the optic tract branch off to the superior colliculus--a structure  in-
volved with eye movements. The rest of the optic tract fibers  synapse on cells 
in the lateral geniculate nucleus. Cells in the lateral  geniculate nucleus send 
their axons in a bundle called the optic radiation  to layer IV (one of six layers) 
of primary visual cortex.  A schematic representation of these pathways was 
shown in notes for an earlier lecture.

 

2.2 Functions of the Chiasm and LGN

 

The optic chiasm routes neuronal information so that information  
from corresponding points on the left and right eyes can come together at  cor-
tex for binocular vision, and in particular stereo vision.  Typically animals 
with frontal vision have nearly complete cross-over, and animals with  lateral 
eyes (e.g. fish) have little or no cross-over. The nervous system has gone to 
considerable length  to bring information from the two eyes together early on. 
Computations  cannot easily be done "remotely", but require close connectiv-
ity between neurons, and the resulting topographic maps. The neurons of lat-
eral geniculate nucleus do more high-pass filtering,  and the cells are 
characterized by fairly symmetrical center-surround  organization like the 
ganglion cells. They show even less response to uniform  illumination than 
ganglion cells. Despite the fact that neurons from the two  eyes exist within 
the same nucleus, no binocular neurons are found in LGN.  We have to wait 
until cortex to see binocular neurons. Although the LGN is  often considered 
a relay station,  feedback from cortex suggests possible role of attention 
mechanisms (see Crick, 1984 for  a speculative neural network theory of  
LGN and reticular function; Mumford, 1991; Sillito et al., 1994).  Although 
we will bypass a treatment of the superior colliculus, its  primary role is in the 
control of eye movements--a highly non-trivial  problem requiring coordina-
tion of head and eye movements in the context of  a constantly changing en-
vironment. 
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2.3 Primary visual cortex

 

  Axons from the optic radiation synapse on layer IV neurons of the  primary 
visual cortex (also known as area 17 cat, striate cortex or V1).  Cortex is  anatomically 
structured in layers, numbered from I (superficial) to VI  (deep). The striate cortex is laid 
out as non-linear topographic map with 80%  of cortical   area devoted to about 20% of 
visual field, reflecting the higher  acuity of foveal vision. Because of the cross-over at the 
optic chiasm, the  left visual field (right retina) maps to right hemisphere. 

               Apart from the neurons the LGN fibers synapse on, and in contrast with  
receptive field characteristics of earlier neurons, many cortical cells are:

• orientation selective 
• binocular 
• spatial frequency selective, with narrow tuning and
• motion selective
• spatial phase selective

Apart from the spatial frequency selectivity, these properties were discovered in 
large part by the work over a couple of decades by Hubel, D. H., & Wiesel, T. N. (see 1968 
reference). Hubel and Wiesel won the Nobel prize for this work.

In the cortex, we see for the first time binocular cells. The cells of the primary 
cortex  are organized into columns running roughly perpendicular to the surface in which  
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cells tend to have the same orientation preference and degree of binocularity. A  
"hypercolumn" is a group of columns spanning all orientations and both eyes.

The receptive field organization of cortical cells is modifiable by experience. A 
number of models of self-organizing neural  networks have been developed to account for 
this (Von der Malsburg, 1973;  Bienenstock et al., 1982; Kohonen, 1981; and Linsker, 
1988).

There are two main types of cells. The 

 

simple

 

 cells are roughly linear except for  
rectification, are spatially and temporally band-pass, and show spatial phase  sensitivity. A 
first approximation model for simple cell response firing rate (in impulses/sec) is:
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Where Wij  are the receptive field weights, and Lij  the image intensity values 
at spatial location (i,j). An example would be a Gabor function (see discussion 
and figures below):

We will return to a more detailed discussion of the receptive field models of 
simple cells later in the section of functions of the visual cortex. The half-wave 
rectification operation, 

 

σ

 

,  sets negative values to zero, and is linear for positive values:
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(A better model would replace the straight sloping line with one that saturates 
at high values as we did for ganglion cells). This model is steady state. To in-
clude time domain dependencies would require the introduction of a band-
pass temporal tuning characteristics.  

The second major class of neurons is that of 

 

complex

 

  cells. Like simple cells, 
complex cells are spatially and  temporally  band-pass, show orientation and motion 
direction selectivity, but are insensitive to  the phase of a stimulus such as a sine-wave 
grating. Rather than half-wave rectification, they show full-wave rectification. A model for 
complex cells would resemble the sum of the outputs of several  subunits positioned at 
several nearby spatial locations. Each subunit would resemble  simple cell with a linear 
spatial filter followed by a threshold non-linearity. One way of obtaining the phase 
insensitivity would be to use subunits with cosine and sine phase receptive fields. The 
motion selectivity could be built in with appropriate inhibitory connections between 
subunits. Full-wave rectification could be built with subunit pairs that have excitatory and 
inhibitory receptive fields centers. Both simple and complex cells show contrast 
normalization--a feature not included in the above simple model. For a recent discussion 
of models of simple and complex cells, see the reading by Heeger (1991):

Heeger, D. J. (1991). Nonlinear model of neural responses in cat visual cortex. In 
M. &. M. Landy A. (Ed.), Computational Models of Visual Processing (pp. 119-133). 
Cambridge, Massachusetts: M.I.T. Press.

Embedded in the cortical hypercolumns  are cytochrome oxidase blobs in which 
are found opponent color cells that seem to lack strong orientation selectivity  
(Livingstone, M. S., & Hubel, D. H., 1984;  Livingstone, M. S., & Hubel, D. H., 1987).

A third class of cells are the 

 

end-stopped  

 

(or "hyper-complex") cells  that have an 
optimal orientation for a bar or edge stimulus, but fire most actively if the bar or edge 
terminates within the receptive field, rather than extending beyond it. It has been 
suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & 
Cynader, M. S., 1987).



 

Psy 5036                                                          Lecture 9B                                                        Kersten, Daniel

 

7

 

©Daniel Kersten, Computational Vision Lab, University of Minnesota, 1999

 

3.0 Functions of Primary Cortex

 

3.1 Stereo

 

As mentioned earlier, primary cortex brings together information  
from the two eyes in single neurons. This information is important for coor-
dinated eye movements and stereo  vision. Although V1 cells are predomi-
nantly binocular, it was at first thought that disparity selectivity did not arise 
until V2 (Hubel and Wiesel, 1970). However, there is now evidence for dis-
parity selective cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Dis-
parity selectivity is a trivial task for single bar stimuli, and it wasn't until 
relatively recently that neurons were found that effectively solve the prob-
lem of false matching (Poggio and Talbot, 1981).

   One possible algorithm for stereo vision is discussed in  one of the 
class readings:

Poggio, T. (1984). Vision by Man and Machine. Scientific American, 250, 106-115.

Stereo vision has received a lot of attention in both computer and bi-
ological vision over the last 15 years. Unfortunately, we do not have the time 
for a detailed study.

 

3.2 Motion

 

The directional selectivity of cells in  striate cortex provide a form of 
early motion detection, akin to that described for invertebrate and rabbit pe-
ripheral vision. This detection  is only local and  thus ambiguous. Cortical 
cells suffer from the "aperture problem", and further computation is  required 
to disambiguate object motion. Cortical cells are also selective for speed (Or-
ban et al., 1983).   Both the motion selectivity and  binocularity suggest a gen-
eral hypothesis for  cortical function: it  links information likely  to have a 
single environmental cause for  subsequent extra-striate processing.

We will return to the computational theory of motion detection in the 
a couple of lectures.
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3.3 Spatio-temporal Filtering

 

Beginning with the psychophysical results of Campbell and Robson  
(1968), and continuing with studies of the spatial and temporal frequency  se-
lectivity of simple and complex cells  discussed in your reading,

DeValois, R., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency se-
lectivity of cells in macaque visual cortex. Vision Research, 22, 545-559), 

there has emerged a picture of how images may be processed in the visual cor-
tex. Let us look at spatial frequency in detail with a view to understanding its 
computational function in vision.

 

3.4 Spatial frequency filtering: Psychophysics and 

 

physiology

 

The figure below shows the results of psychophysical masking studies 
that reveal spatial filtering properties strikingly similar to those found in stri-
ate cortex (Daugman). 

These data were gathered as follows. The contrast threshold for a sine-wave 
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grating is found in the presence of a fixed grating mask (e.g. 8 cycles/degree, 
and 30% contrast). Contrast thresholds are plotted as a function of x and y 
spatial frequencies (this corresponds to an orientation, and spatial frequency 
in that direction). 

The results of masking, adaptation, and other psychophysical studies 
of spatial and orientation frequency selectivity in human vision are surpris-
ingly consistent.  The figure below shows spatial frequency and orientation 
tuning (contours plotted at half-amplitude) for cortical cells (the top and bot-
tom two plots on the left which differ only in being log and linear plots), and 
from human psychophysical data (the top and bottom two columns on the 
right). 
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3.5 A cortical basis set for images

 

Both the psychophysical and neurophysiological data could be ac-
counted for, in part,  by assuming the visual system  performed a quasi-Fou-
rier analysis of the image. One possible model assumes that the visual system 
computes the coefficients (or spectrum) of an image with respect to the fol-
lowing basis set, called a Gabor set (Daugman, 1988):

The spectrum coefficients are represented by the firing rates of cells whose 
receptive field weights are represented by the above basis functions. In actu-
ality, because as we saw earlier, simple cells behave more like linear filters 
followed by half-wave rectification, there should be two cells for each coef-
ficient-- "on" and "off" cells). One difference between this basis set, and the 
Fourier basis set (i.e. the optical eigenfunctions) is that this set has a local spa-
tial restriction because of the Gaussian envelope. A second difference, which 
has major implications for computation, is that the basis functions are, in gen-
eral, not orthogonal. Graphs of these functions typically look like wave-pack-
ets: sine phase 

cosine phase

Here we've plotted a one-dimensional slice through a sine, and cosine 
Gabor function. In two dimensions (with the standard deviation , and the x 
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and y spatial frequencies equal to 1), the Gabor patch looks like:

Often, one specifies the orientation and frequency of the two dimen-
sional basis function.

orientation: θ =  tan−1  

fy
fx

 


 
f

 
r

 
e

 
q

 
u

 
e

 
n

 
c

 
y

 
 

 
:

 
f

 
 

 
=

 
 

 
f

 
2

 

x

 

 
 

+
 

 
 

f
 

2

 

y

 



 

Psy 5036                                                          Lecture 9B                                                       Kersten, Daniel

 

12

 

©Daniel Kersten, Computational Vision Lab, University of Minnesota, 1999

 

The above specification of the basis set has to be discretized, and leaves sev-
eral free parameters. Most models of detection and masking get by with about 
6 spatial frequencies, about 12 orientations (specified by the ratio of horizon-
tal and vertical spatial frequencies), and two phases (cosine and sine) at each 
retinal location. A subset of neurons representing a particular spatial frequen-
cy bandwidth  makes up a spatial frequency channel. (Although there is neu-
rophysiological evidence for pairs of V1 neurons having receptive fields with 
90 deg phase shifted relative to each other, there is evidence against absolute 
phase--i.e. there is not a predominance of edge or bar type receptive fields. 
See Field and Tolhurst). One parameter still left unspecified is the standard 
deviation or spread of the Gaussian envelope. If large, this basis set approach-
es that of regular and  global Fourier analysis. The psychophysical data sug-
gest that the standard deviation be such that the Gaussian envelope is about 
one cycle (at the 1/e point) of the sine wave. One cycle corresponds to about 
1.5 octaves spatial frequency bandwidth.

Why  would the visual system have such a representation? We have 
two types of explanations. One is that  encoding over multiple spatial scales 
is important for subsequent processing  that may involve edge detection, or 
stereoscopic matching, and so forth.  Analogous pyramid schemes have been 
developed for computer vision.    (See Adelson, E. H., Simoncelli, E., & Hin-
gorani, R., 1987). The second explanation is in terms of economical encoding 
which we pick up on briefly below.

An interesting historical note is that many of early attempts to under-
stand visual cortical receptive fields in terms of filters localized in space and 
spatial frequency were forerunners of modern wavelet theory. 

 

3.6 Edge Detection Revisited

 

Because of the orientation selectivity of cortical cells, they have been  
sometimes interpreted as edge detectors. It is easy to see how a sine-phase Ga-
bor function filter (1 cycle wide) would respond vigorously to an edge orient-
ed with its receptive field. This type of receptive field behaves as a 2D 
smoothing operator followed by a first order directional derivative. If one 
took the outputs of two such cells, one vertical and one horizontal, the sum of 
the squares of their outputs would approximate the squared magnitude of the 
gradient of the smoothed image:

(see the squared gradient on p. 163 of Horn). 
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One could also build zero-crossing detectors by ANDing the outputs of ap-
propriately aligned center-surround filters (Marr and Hildreth). 

Although one can build edge  detectors from oriented filters, simple 
cells cannot uniquely signal the  presence of an edge for several reasons. One 
is that their response is a  function of many different parameters. A low con-
trast bar at an optimal  orientation will produce the same response as a bar of 
higher contrast at a  non-optimal orientation.  There is a similar trade-off with 
other parameters  such as spatial frequency and temporal frequency. In order 
to make explicit the location of an edge from the responses of a population of 
cells, one would have to compute something like the "center-of-mass" over 
the population, where response rate takes the place of mass. Another problem 
is that edge detection has to take into account a range of spatial scales.  The 
cortical basis set does encompass a range of spatial scales, and in fact may be 
"self-similar" across these scales. See Koenderink (1990) for a recent theoret-
ical discussion of "ideal" receptive field properties from the point of view of 
basis elements.

 

3.7 Economical coding by primary cortex

 

We might expect something like Fourier analysis of the image to re-
sult in efficient coding because of  the close relationship between Fourier ro-
tations and Karhunen- Loeve transformations (e.g. Appendix A, Andrews, 
1983). Fourier coefficients for natural images tend to be uncorrelated. Some 
work has been completed toward a functional explanation for  the orientation 
and spatial frequency tuning properties of  cortical receptive fields based on 
the statistics of natural  images (Field, 1987; Snyder), but the story is far from 
complete. Barlow has argued that a decorrelated representation of sensory in-
formation is important for efficient learning (Barlow, 1990).

In 1996, Olshausen and Field showed that one could derive a set of ba-
sis functions that have the same characteristics as the ensemble of visual sim-
ple cells in primary visual cortex by requiring two simple constraints:

1) One should be able to express the image as a weighted sum of the basis 
functions. 

2) The total sum of activity across the ensemble should, on average, be small. 
This latter constraint is called "sparse coding". That is, a typical input image 
should activate a relatively small fraction of neurons in the ensemble.
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Figure from: Olshausen & Field, 1996

 

3.8 Neural networks and adaptive redundancy 

 

reduction

 

There has been recent rapid progress in the relationship between self-
organizing models of visual cortex, and efficient coding of image informa-
tion. For more on this, see:  Linsker, R. (1990) and  Barlow, H. B., & 
Foldiak, P. (1989). Linsker's computational studies show, for example, that 

+
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orientation tuning, and band-pass properties of simple cells can emerge as a 
consequence of maximum information transfer (in terms of variance) given 
the constraint that the inputs are already band-pass, and the receptive field 
connectivity is  a priori limited.

We will see in the next lecture that cells in the visual cortex send their 
visual information to an incredibly complex, and yet structured collection of 
extra-striate areas. Any hypothesized function of striate cortex must eventu-
ally take into account what the information is to be used for. In the next lec-
ture, we will give a quick overview of extra-striate visual cortex, and 
introduce the computational problem of estimating scene properties from 
image data.
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