[d
United States Patent [19] (111 Patent Number: 5,073,392
Atwell et al. [45] Date of Patent: Dec. 17, 1991
[54] PROCESS OF FORMING A 4,675,197 6/1987 Banner et al. ...ccvienicrnnne 426/292
MICROWAVEABLE FOOD PRODUCT 4,735,812 4/1988 Brysonetal. 426/262
H AVXNG A SELECI‘ED COLOR 4,751,090 6/1988 Belleson et al. ..oceeeceecrnrnenen. 426/93
4,755,392 7/1988 Banner et al.cocovececeeneane 426/555
[75] Inventors: William A. Atwell, Andover; David J. 4,857,340 8/1989 Parliment et al. ...ccoceeeeeennee 426/96
Domingues, Plymouth; Paul J. 4,882,184 11/1989 Buckholz et al. 426/243
Beckmann’ Mendota Heights; Julio 4,904,490 2/1990 Buckholz et al. 426/262
R. Panama, Blaine; Steven K. 4,917,907 4/1990 KWis €t al. wooveervrrrirersnere 426/90
Fahrenholtz, Plymouth, all of Minn. OTHER PUBLICATIONS
[73] Assignee: The Pillsbury Company, Minneapolis, David C. T. Pei, Microwave Baking-New Developments-,
Ming. Bakers Digest, Feb., 1982.
[211 Appl. No.: 611,159 Primary Examiner—George Yeung
[22] Filed: Nov. 8, 1990 Attorney, Agent, or Firm—Kinney & Lange
Related U.S. App! D [57) ABS cr
at .S. icati ta .
. eate ppiication B A method of forming 2 microwaveable food product
[62] Division of Ser. No. 339,567, Apr. 17, 1989. having a region of a preselected color is disclosed. The
[51] Int. CLS woeoctieencreeeecerieeseneaesnnens A23L 1/00 method employs the use of a programmed computer
[52] US.CL cocereeeeceneenrinnns 426/231; 426/243; means which provides output information useful in
426/262; 426/305 making a microwaveable food product of a preselected
[58] Field of Search 426/231, 233, 242, 243, color. Information is inputted into the programmed
426/262, 305, 549, %4 computer means, the information is processed and out-
56] References Cited put information is produced. Food prepared according
to the output information has a region of a selected
U.S. PATENT DOCUMENTS color.
4,448,791 5/1984 Fulde et al.cccocvvervvnnenene 426/94
4,650,686 3/1987 Young et al.oooooorreerrerins 426/321 5 Claims, 30 Drawing Sheets

U.S. Patent Dec. 17, 1991 Sheet 1 of 30 5,073,392

YELLOW YELLOW
GREEN ~

U.S. Patent Dec. 17, 1991 Sheet 2 of 30 5,073,392

U.S. Patent Dec. 17, 1991 Sheet 3 of 30 5,073,392

T 100

REDUCING AMINE
SUGAR SOURCE

GLYCOSYLAMINE

AMADOR! COMPOUNDS

COLORLESS INTERMEDIATES

Fig 4

MELANOIDINS

Sheet 4 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

(WN) HLONIT3AVM 7 .th
00L 009 005 o0t
} } } : =100
+002
JONVLLIWSNVYHL %
100t
+009
+0°08
000l
...................... OEW ~-—-=--=~GIN OW

Sheet 5 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

0,072

(WN) HLONITIAVM
onww

00

-0'02

-O0b
- JONVLLINSNVYL %

+009

-0'08

00l

- - —

od

Sheet 6 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

L 61f;
JWIL XN1434

2 v2 I 8l 6 2 6

2] i 1]

G00
'O
G0
20
- G20

- €€°0
- 0
Sv0

WN Otb

30NVEd0SsavY

U.S. Patent Dec. 17, 1991 Sheet 7 of 30 5,073,392

1o

gigo 8

[a

= i

= 3

}—

w Py

2 S

w a.

= s

- :

(O]

0 2

|
T %
2 8 2 8 | &2 ©

LAG TIME (MIN)

Sheet 8 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

6 61[,

ov

SAUVIAIWHILNI +

oe

JNIL
074
1

SINVLOV3H O

Ol

o

o
=

O
:: 0]

- 90

J 00l

3ONvaHosav

Sheet 9 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

J1VNIFSVD S8Vs
AJHM S8YO NINNGTV Sgve AQOS SE8V¢® N3LNO SEVO

NIZ104d OW
8 9 1% Z . 0

- A P

-
o

WN 0.S 'S8V

NI3104dd 9N 'SA WN OLS 3ONVEHOSEV
oL ‘61f,

Sheet 10 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

Ol

i wﬁv 04S 'Sgv 3d01S e

WO OO0I/SAT WO

l 0
: : : 0c-31L°¢

- 0
(o]
<

-1-.3007¢

- -3 00

- 1-3 009

00’ 1= XIII'O+.6€10-=A

-3 008

NI310Hd 9N O0I/SAT WO SA
WN OSZ 1V 3ONVBHO0SEV NI310¥d dJO0 3d01S

WN O02G 1V 3ONvEH0sav
NI310¥d 40 3dO1S

Sheet 11 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

4o 2101 fy

SANTIVA 1o

ol

NI3104d WO OOI/SAT WO

09

072

NI310dd WO OOI/SAT WO SA
S3NTTVA 71 ¥3NAYVYO

S3NIVA 1

Sheet 12 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

% 2L 61

1-3008

WN 0.6 1V
JONVBYOSEY NI310dd 40 3d01S

k3009 1F300Yv 13002 02312

Ot

S3INIvA 1o

-0G

oL

WN 0/S 1V 3ONVBH0S8V NI310dd 40 3d01S

SA S3NTIVA 11 43NAYVO

S3NTVA 1

Sheet 13 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

J ot .hu.ﬁv NI3LO¥d W9 OOI/SAT W9
8 9 b 2 0
Ol 4 4 4 4 0]
S3ANTIVA V
SINIVA Vo
-0l
660=4 X2.822 +IS521-=A
02

NI3L04d WS O0I/SAT W9 SA
S3NTTVA V -H3NQYHV9O

Sheet 14 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

G 2L 61fy

1-3008

SANTTVA Vo

WN OLS LV
JONVEH0SEV NI3L0Yd 40 3d071S

1-3009 -300v 1F300¢ 02-31.¢

O

260=4 X88l11'02+2.b8'| =A

ol

0e

WN 04S 1V 3ONvEY0SEV NI3L10dd 40 3d071S

SA S3NTIVA V d3NQHVO

S3NTVA V

Sheet 15 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

&l .&&M | 3NTVA 1@

LINDS18 H3d ANNOJNOD SWVH9
m.-N -m-N\r —.-N m- 1 N!--—] m-.— 1 m.—— 1 —.n— -m-o 1 N|--o | m-o&:m

86
N o

-09
19
-9

~OULNOD a3nve
ATIVNOILLNIANOD ”mw 3NTIVA T M3NGHYO 3OVH3AV

~G9
-99
-9
-89
-69
0L
A
oL

S3NTVA 1
3S0TIAX / NI3LOYd ACS
AQN1S SSANMNIIHL 9NILVOD LINOSIY

Sheet 16 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

3NTIVA H3NGHVO 39VHIAV

INIVA 8 INIVA V 14 .hw&.cv
1IN2SIE ¥3d ANNOJWOD SIWVYO
gz €2 g 61 L1 Gl € Il 60 10 .m.ov
-9
-8
-0l
-21
-
9|
-8|
TJOHLNOD @3NVE 02
ATTVNOILNIANOD 22
-2
4 +/ | £9¢
+ -92
0g

S3NTIVA 8 ANV V
JSOTAX/NIFL0Hd AOS
AJNLS SSINMIOIHL ONILVOD 11NnJSig

Sheet 17 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

W3LSAS N3dO -,! 3804d
W3LSAS Q3SOONI -1 3804d (93S) INIL

(010,

002 ool

i Ot

| dW3Ll 3904de
| dW31 3804do

Ot

-09

1~G61£

371dWVS 11n0SI8 3903 °1 107d

dWIL SA 34N1vH3IdW3L

JYIHMSOWLY 30V4YNS 11NJSIE

00l

3 S§33493d
3HNLVH3dW31 | 3804d

Sheet 18 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

W31SAS

W3LSAS d3SO1ON3-¢ 3804d

(010

N3dO-§ 3804d

(03S) 3INIL

O@N On.v_

0

w02

£ dW31 3804d e
¢ dW3l 3804de

00l

GG 611,

3TdWVS 11NJSIE H31N30 ¢ 1071d

J S$33Y493d
INIVYIdW3L € 380dd

Sheet 19 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

o] .m“.m.w 3INIVA 7 ¥3NQEV9 o
(SAVQ) 39V 1ONAONd

og 02 ol 0

1 i L A I

,T/lO/D\O/D\DJxON

00l

ANNOJWOD 3SOTAX ‘NIWNETV ‘ACS
39V LONA0Hd ‘A 3MIVA 7T 43NQYV9I

3NTIVA 1 Y3NQEVO

Sheet 20 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

INIVA 8 H3NQYVO+ 3NTIVA V 43NQHVOo

L61fy (SAVQ) 39V 1ONAOHd
[obm O.N 3 o._ i oo

aGNNOdWOD 3SOTAX "NIWNETV AOS
39V 10NA0Hd ‘A 3ANTVA 1 ¥3NAYVO

ANTVA Y3NQYVO

Sheet 21 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

81 611,

90

31VNIQH00D X
Yo) _ %0

-0

S0

ONINMOYE QUVTTIVIN 40 SFOVLS SNOIYVA 1V 3SOTAX
HLIM SAIJV ONIAV 43HLO ANV NIWNGTY WNH3S 3NIAOS
40 SNOILNTIOS SNOIYVA 40 WVHOVIQ ALIDILYWOYHD €6l

31VNIQH00D ,A

Sheet 22 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

Qn .hwh (3) dW3L

43 1VM \m»mo HILUM A@&o EEBN

.__o
\ \.\ 1H0Hs ~ 19,
N

JHOHS

e
FHi]
BT
. n‘- .t
veea
oY
Y oee

.

14OHS 10

(30) LyoHs(
(30) 10y
(30) Y3LVMHG
(30) SAYAES

07770 e

NOILVHVYd3dd IAVMOYOIN Ol d0ldd XIS ANV
3NO AVG 39VHOLS N33M1389 ¥0T0D 30V4HNS LINDSIE NI 3ONVHO

JONVHO d07103

Sheet 23 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

(4) dW3L
Y31UVM

H31VM d3LVM
1HOHS 0, \SAdd, 1YOHS 10 ~m>mo 1HOHS .:O SAdd
N\ Do) / i
VI 0
“m.‘m. JONVHO 40109

0z b1,

- -
et

St
LIV
AL

I M £y
Rt RaES
Pt e 5

IR0

(30) , LYOHS[]
(30), 10§ .
(30) , 43LvM & 2 o
(3Q) , SAMO [

Y,

(00000

0c

39vVH0LS SAVA XIS H3ILIV
400D 32V4HNS 11N2SI8 NI 39NVHD 3AVMOYIIW 1SOd Ol 3ud

Sheet 24 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

12 61.£,

]
’&

3.
ol ¥ ;

'’
Jyor

——

- -:’

JARAA

Jotla

2BRH

v
P

SN DRSS 3

¥t

NRPOEREAS

Joig

3G
L

e Ay
Y AN G

Dy
2N

osta hJ O 23
RIS

oo oo | o
i HE @ HS afm H 1e)

AV H

9'G MISMOYE HOLVd LT IdIML[H]

LTI A UAEIDPCN Y TP I HD 34 WA IO PO ARES 24D

*dWNAN33YIS

Sheet 25 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

2z 61[,

Ly ..-J\I ve ote MRS RA
wan ...I r AT TN A A-.C...... PR RN A n..\......n;ﬁ....\.
e, L RALTN %) A, BA ERSOAHA T A ' o PSRN Py 20X
o T RLNLS Al v
3 e
SO -1
N 22
' e BR
o N oy
b ot
251 0
e oo .
o th
PR Y
- >3
o) 37
. P
® . "t
X3 v
L30) 0
ot 3
I 5
T-o .|
o4 d
.
’

00S | 005 | 00s | OCS

18€2160

008

3S01AX/350N 79 NINNGV/AOS §

NI3L104d/HVONS

= LNOH3d ETﬁzuumun_E

ez 3N L

4 l
e e e R

U.S. Patent Dec. 17, 1991 Sheet 26 of 30 5,073,392

SCREENDUMP:

a0t

e GLUCOSE / XYLOSE

APEAN I "W ENOPY T WA= LD AP A T4 A LONT LT\ P FIMINFATM IR TR AN ™ VU O o,
3
A

Sheet 27 of 30 5,073,392

Dec. 17, 1991

U.S. Patent

3LVNIQYO0O0D X

90) 0 €0
i 1 1 1 1 n.o
bz ‘bf,
ASOIAX ®
35010nYd -0
3s00N19 o
S0

3INISAT HLIM ONINMONE QHVTIIVIN 40 S39VLS SNOIYVA
1V SHYONS 9NIONAIY SNOIYVA 40 WYHOVIQ ALIOILVNOHHD I€61

3LVNIQYO0D A

U.S. Patent Dec. 17, 1991 Sheet 28 of 30 5,073,392

DE VALUE OVER STORAGE TIME
PRE - MICROWAVE SAMPLES

TEMP = O°F
20+

15

U.S. Patent Dec. 17, 1991 Sheet 29 of 30 5,073,392

DE VALUE OVER STORAGE TIME

PRE - MICROWAVE SAMPLES
TEMP =40°F
204

151

DE] /
10- /

U.S. Patent Dec. 17, 1991 Sheet 30 of 30 5,073,392

DE VALUE OVER STORAGE TIME
PRE -MICROWAVE SAMPLES

TEMP=70° F

O
N -
D
19)]
0 ¢)

5,073,392

1

PROCESS OF FORMING A MICROWAVEABLE
FOOD PRODUCT HAVING A SELECTED COLOR

The present application is a divisional application of
parent case, Ser. No. 07/339,567, filed Apr. 17, 1989 for
a PROCESS FOR MICROWAVE BROWNING.

BACKGROUND OF THE INVENTION

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

The present invention relates to a process for mi-
crowave-induced food browning, and to a food prod-
uct. Using principles of food science and, more specifi-
cally, the principles of food browning chemistry, a
browning system has been achieved that may be used to
brown select regions of foods upon exposure to micro-
wave radiation. Further, the invention includes a pro-
cess for making a food product using computer, food,
and color science.

A major part of the appetizing appearance of conven-
tionally heated foods is imparted by brown colors de-
veloped on their surfaces during preparation. Consum-
ers have come to expect this appearance and consider it
desirable in a variety of food products including meat,
cheese, and cereal grain based products. It is not usually
difficult to obtain a browned appearance using conven-
tional cooking because the reactions leading to brown
colors will proceed for the components comprising the
surface of most foods under conventional baking condi-
tions. However, it has been very difficult to obtain
brown colors on the surfaces of foods prepared in mi-
crowave ovens without using browning devices.

Reasons why surfaces of microwave prepared prod-
ucts do not brown have been suggested (see for exam-
ple, D.C.T. Pei, Baker’s Digest, February 1982). This
reference states that the heat in a conventional oven is
transmitted from the oven environment to the food
surface via convection and transmitted from the surface
to the imerior of the product via conduction. This pro-
cess of heat transfer enables the food surface to dehy-
drate and rise above the boiling point of water by the
end of the conventional bake time. Microwaves, how-
ever, penetrate the surface of the product and directly
heat the interior of the product. This induces moisture
transfer to the surface. Evaporation of the moisture
from the surface to the microwave oven environment
usually restricts the surface temperature to a maximum
of about the boiling point of water during the micro-

wave bake time. The resultant surface temperature is -

too low to enable the browning reactions to proceed at
the necessary rate with the browning reactants inherent
to the product surface. In addition to the depressed rate
of microwave browning versus conventional browning
due to the temperature conditions, microwave prepara-
tion times are generally much shorter than conventional
preparation times. Therefore, according to the afore-
mentioned reference, the surface conditions and prepa-
ration times, resulting from the basic differences in heat
transfer mechanisms between microwave and conven-
tional heating, create a very difficult problem for those
desiring to effect browning in a microwave oven.

40

45

60

65

2

Generally, the solutions to microwave browning can
be divided into the following categories: packaging
aided, cosmetic, and reactive coating approaches. The
first approach involves the use of microwave susceptors
which heat to temperatures exceeding the boiling point
of water and brown surfaces in close proximity or direct
contact (see for example, U.S. Pat. No. 4,266,108). Lim-
itations of commercially available susceptors include
the requirement of close proximity or direct contact,
their generally uncontrolled temperature profile, and
their generally high cost. The second approach is cos-
metic and includes various surface applied formulations
that are brown prior to application (U.S. Pat. No.
4,640,837, and U.S. patent application Ser. No. 251,035
Zimmerman, filed on Sept. 26, 1988, now abandoned).
The third approach involves coating the surface with a
formula that will react to yield a brown color at the
surface conditions described above. Two such varia-
tions of this approach are described in U.S. Pat. Nos.
4,735,812 and 4,448,791.

The disclosure in assignee’s United States patent ap-
plication for an invention relating to *Color System and
Method of Use on Foods” to Ernst Graf, et al,, filed
contemporaneously herewith, is incorporated herein by
reference.

A discussion of microwave heating can be found in
U.S. patent application Ser. No. 085,125 to Pesheck, et,
filed on Aug. 13, 1987, now U.S. Pat. No. 5,008,507.

The success of a product approach to browning re-
quires control over the rate of the browning reaction.
During the shelf life of a product, the rate of browning
should be controlled or the product may brown prior to
preparation by the consumer. This is usually unaccept-
able to the consumer. Then, on exposure to a micro-
wave field, the rate should be sufficiently high to brown
the product during the short preparation times gener-
ally encountered with microwave products.

The invention described herein is primarily based on
the chemistry of Maillard browning. Non-enzymatic
browning of this type is well characterized, the litera-
ture on the subject is extensive and it i the most common
form of browning in heated food systems.

There are many reviews of Maillard browning and
associated reactions (e.g., Carbohydrates, In: Food
Chemistry, H. D. Belitz and W. Grosch, Chapter 4,
second edition, 1987, this reference is incorporated by
reference herein). Although the myriad of individual
reactions leading to the development of the brown
melanoidin polymers has been extensively studied, reac-
tions after the initial few steps are not well character-
ized. This complex series of reactions may be divided
into three major categories: the initial condensation of
the amine and the carbonyl, the formation of colorless
intermediates, and the formation of colored compounds
(e.g., the melanoidin polymers). FIG. 4 illustrates this
highly simplified reaction scheme.

Promotion of browning in a microwave oven is a
difficult problem. Initially, attempts were made to de-
velop a microwave Maillard browning system capable
of browning refrigerated doughs (e.g., Pillsbury refrig-
erated buttermilk biscuits). However, as mentioned
earlier, there exist several inherent problems with re-
spect to accomplishing this task (e.g., short cook time,
etc.). One browning system examined employed pectin
gels as the browning agent carrier. Although the gel
system did brown microwave-prepared biscuit dough
samples to a limited extent, the prepared biscuit dough

5,073,392

3

samples in this study were found to have less than opti-
mal crumb structure and surface texture.

Other food approved carrier systems were used in an
attempt to improve the surface textural properties of the
microwave prepared biscuit samples. Shortening was
found to be preferred due to its ease of manipulation and
broad product system applicability. Biscuit dough sam-
ples were coated with a mixture of reducing sugar, soy
protein, and shortening: placed in a microwave oven;
and cooked for a time sufficient to brown the surface.
Unfortunately, it was observed that during the micro-
wave cooking cycle, the biscuit samples became very
dehydrated and overdone. In a further attempt to im-
prove the textural properties of the biscuit samples, the
samples were placed into a sealed plastic pouch prior to
microwave treatment. Surprisingly, the pouched biscuit
samples not only remained moist and soft, but also
browned to a much greater extent in a much shorter
time, when compared to biscuit samples prepared with-
out a pouch.

The disclosure in U.S. patent application Ser. No.
213,013 to K. Anderson, et al., filed on June 29, 1988,
now U.S. Pat. No. 4,842,876 is incorporated herein by
reference.

These observations led to the conclusion that steam-
containing packaging, and possibly other means of en-
hancing browning, in conjunction with microwave
browning ingredient formulation, could be used as a
means to control the browning reaction in such a man-
ner as to allow product browning to coincide with
product textural development.

The literature (e.g., Color Science Concepts and
Methods, Quantitative Data and Formulae, G. Wys-
zecki-and W. S. Stiles, John Wiley and Sons, Inc. 1982,
this reference is incorporated by reference herein), indi-
cates that the measurement of color is a very compli-
cated subject.

A Pacific Scientific Gardner XL-20 Colorimeter and
Milton Roy Visible Spectrophotometer were used
throughout the research for this invention. The follow-
ing discussion of the primary responses is based upon
the instruction manual for the Gardner instrument
(Gardner Laboratory Inc., 5521 Landy Lane, Bethesda,
Md.).

Three responses were recorded for a routine color
measurement. L corresponds to a scale defining a range
from black (L=0) to white (L=100). Another value,

-az, defines the range from green (ar=—40) to red
(az = +40). Finally, bz defines a range from blue
(b= —40) to yellow (br=+40). Subsequently, zero
values for ar prand b1 cOTTESpOnd t0 White, grey, or black
depending on the L value. Hue (type of color: orange,
blue, etc.) and chroma (color intensity: vivid or dull) are
defined by ar and p2. FIG. 1, which is from the Gardner
manual, illustrates the three dimensional space describ-
ing this system.

—

0

—

5

20

40

55

The L az by system is only one system of describing -

colors. Others include the L a* b* system and the Y x’
y' system. Equations are available to convert from one
system to another.

The L* a* b* system (FIG. 2) is very similar to the L
az by system in that the same relative scales apply (L* is
white to black, a* is green to red, and b* is blue to
yellow). The Y x' y’ system (FIG. 3), however, adopts
a somewhat different form. The x' and-y’ coordinates
define a point on an irregular portion of an x' y’ plane
that is composed of various colors. The perimeter of
this area is graduated in nanometers corresponding to

65

4

the wavelength of the corresponding hue. Both hue and
chroma are defined by x' and y'. Y, a scale running
perpendicular to x" and y’, is a measure of lightness,
somewhat analogous to L or L*.

SUMMARY OF THE INVENTION

The present invention involves a process for prepar-
ing a system for a microwave food product which
browns during exposure to microwave radiation in a
time sufficient to prepare a food for consumption. The
process includes the steps of: selecting an appropriate
carrier which is effective to inhibit browning during the
manufacture, distribution, and shelf life of the product
(if required), determining the microwave cook time for
desirable texture or temperature, selecting particular
browning agent(s) and controller(s) to yield the desired
browned appearance in an appropriate microwave ex-
posure time, preparing the browning system using these
preselected components, and delivering the system to
the desired or preselected region(s) of the food product.

The present invention further involves a process for
browning a food product during exposure to micro-
wave radiation for a time sufficient to prepare said food
product for consumption. The invention encompasses
alterations in color appearance. Consequently, applica-
tion of the invention involves attaining acceptable tex-
tural characteristics of the target food product during
microwave cooking. When the appropriate formulation
and microwave recipe have been obtained, the inven-
tion described herein can be applied to attain a desirable
browned appearance.

In accordance with one aspect of this invention, there
is provided a food product having a browning region
for developing a desired browning effect during prepa-
ration of the food product for consumption, the food
product comprising:

(a) a starch based component;
(b) a browning system applied to the starch based com-

ponent to provide the browning region; and °
(c) the browning system comprising Maillard browning

reactants for developing the desired browning effect
during microwave irradiation, and a carrier system
containing the Maillard browning reactants, the car-
rier system maintaining the Maillard browning reac-
tants in a substantially reactively immobilized state on
the food product prior to microwave irradiation and
while the food product is at a temperature of about
40° F. (about 4° C.) for at least about two days.

The invention further extends to a process for making
a food product which has a browning region for devel-
oping a desired browning effect during preparation of
the food product for consumption by microwave irradi-
ation, the process comprising:

(a) selecting a starch based component;

(b) applying a browning system to a browning surface

. area of the starch based component; and

(c) the browning system comprising Maillard browning
reactants for developing a desired browning effect
during microwave irradiation, and a carrier system
containing the Maillard browning reactants, the car-
rier system maintaining the Maillard browning reac-
tants in a substantially reactively immobilized state on
the food product prior to microwave irradiation and
while the food product is at a temperature of about
40° F. (about 4° C.) for at least about two days (about

48 hours).

The browning region is usually and preferably an
external surface region or area of the food product.

5,073,392

5

However, where the browning region is within or ex-

tends to within the food product, it may be in selected

areas or regions within the food product or may extend
substantially throughout the food product.

In an alternative embodiment of the invention, only
one of a pair of Maillard reactants may be contained in
the carrier system in a substantially reactively immobi-
lized state. Thus, in accordance with this embodiment
of the invention, there is provided a food product hav-
ing a browning surface region for developing a desired
browning effect during preparation of the food product
for consumption by microwave irradiation, the food
product comprising:

(a) a starch based component:

(b) a first Maillard browning reactant applied to the
browning surface area of the starch based compo-
nent;

(c) a second Maillard browning reactant applied to the
browning surface area, the second Maillard browning
reactant being complementary to the first Maillard
browning reactant for reacting therewith to develop
the desired browning effect during microwave irradi-
ation; and

(d) the second Maillard browning reactant being con-
tained in a carrier system for maintaining that Mail-
lard browning reactant in a substantially reactively
immobilized state on the food product prior to micro-
wave irradiation and while the food product is at a
temperature of about 40° F. (about 4° C.) for at least
about two days.

In accordance with this invention, the carrier system
maintains at least one of the Maillard browning reac-
tants in a substantially reactively immobilized state so
that the reactants will not produce any significant
browning effect during manufacture of the food prod-
uct, during handling and storage of the food product
under appropriate conditions, and preferably during the
freeze/thaw cycles or cooling/heating cycles which are
not unusual in frozen or refrigerated food products after
manufacture of the food products and before they are
heated for consumption by the consumer.

The carrier system is preferably such that the Mail-
lard browning reactants will remain substantially reac-
tively inmobilized at temperatures of up to about 40° F.
(about 4° C.) for periods of up to at least about two
days, and preferably up to at least about four to six days.

Preferably, the carrier system is such that the Mail-
lard browning reactants may be maintained in a substan-
tially reactively immobilized state even at temperatures
up to about 70° F. for at least about 2 days, and prefera-
bly for up to about four to six days.

In accordance with a further aspect of the invention,
there is provided a process for making a food product
which has a surface area developing a desired brown
coloration during preparation of the food product for

20

25

30

40

45

55

consumption by microwave irradiation for a predeter-

mined period of time, the process comprising:

(a) preparing a suspension comprising substantially ho-
mogeneous coparticles of reducing sugar and protein-
aceous substance in lipid to produce a browning sus-
pension; and

(b) applying an amount of the browning suspension to
an area of the surface of the food product, the amount
being sufficient to develop the desired surface color-
ation during microwave irradiation of the food prod-
uct for the predetermined period of time.

In accordance with yet a further aspect of the inven-
tion, there is provided a process for preparing a food

65

6

product having a browning surface area for developing

a desired browning effect during preparation of the

food product for consumption, the process comprising:

(a) forming a solution comprising water, reducing sugar
and proteinaceous substance, the reducing sugar and
proteinaceous substance being in a ratio effective to
produce Maillard browning to a desired degree;

(b) dehydrating said solution to produce a stable copar-
ticulate browning composition which will brown
when a food product to which it is applied is prepared
for consumption by microwave irradiation for the
predetermined period;

(c) suspending a quantity of the coparticulate browning
composition in a lipid;

(d) applying the lipid to a browning surface area of a
food product; and

(e) storing the food product at a temperature below
about 40° F. (about 4° C.). ‘

The Maillard browning reactants may be reactants of
any appropriate type. The browning reactants may
therefore include aldehyde or ketone-containing carbo-
hydrates (for example, reducing sugars) capable of par-
ticipating in Maillard browning, and amine-containing
ingredients (for example, proteins, peptides, or amino
acids) capable of participating in Maillard browning.

Embodiments of the invention may involve prereact-
ing the Maillard browning reactants to yield substan-
tially or generally colorless Maillard browning interme-
diates, or intermediates which generally match the
color of the food product to which they are to be ap-
plied and which are therefore generally colorless in the
context of their application to a manufactured food
product. The reactants or intermediates may therefore
be generally colorless, or may be “in situ colorless”
where they generally match the color of the food prod-
uct. These are the intended meanings of “colorless” and
“in situ colorless™ in the context of this application. The
invention may further involve the formation of homo-
geneous coparticulates of the original reactants and any
intermediates; may involve the formation of heteroge-
neous particles by the adsorption of the browning reac-
tants onto particles (for example, silicates); and may
involve the incorporation of browning controllers.

In some cases, the addition of browning controliers to
affect the rate of subsequent Maillard browning in situ
may be used. Browning controllers may include pH-
adjusting ingredients (e.g., sodium bicarbonate, sodium
hydroxide), phosphate salts (e.g:, sodium or potassium
phosphate salts), enzymes (e.g., mutarotase or a prote-
ase), metal ions (e.g., iron and copper salts), steam-
retaining packaging, packaging susceptors, and ioniz-
able salts capable of affecting the dielectric properties of
the browning system in such a way that the temperature
of the browning system is greater, upon exposure to
microwave energy, than when salt is absent.

. While this invention relates particularly to a food

product having a browning external surface area to

develop a desired brown coloration during preparation

.of the food product for consumption by microwave

irradiation for a predetermined period of time, other
regions of food products may likewise be treated with
the browning system of this invention.

One aspect of the invention may involve preparing a
suspension comprising substantially homogeneous
coparticles of the Maillard browning reactants. The
substantially homogeneous coparticles of aldehyde or
ketone-containing carbohydrate and amine-containing
substances capable of participating in Maillard

5,073,392

7

browning reactions, may be formed, for example, by
dehydrating an aqueous solution comprising a reducing
sugar and a proteinaceous substance. Such dehydration
can allow some prereaction and can lead to the forma-
tion of particles with the Maillard browning reactants
and any subsequent substantially colorless intermedi-
ates, in what can be described as intimate integrated
physical contact. Such coparticle formation can facili-
tate the later Maillard browning reaction by the proxim-
ity and/or prereaction of reactants in situ on the surface
of a food product being prepared for consumption in a
microwave oven.

The browning systems including the Maillard
browning reactants, intermediates thereof and/or
coparticles thereof, are preferably substantially color-
less or the color of the food surface of the food product
prior to preparation for consumption by microwave
irradiation so that the browning surface area of the food
product will develop a desired final browning color-
ation during microwave preparation and not before.
Browning before microwave preparation can often lead
to a lack of consumer acceptance. For this reason, the
carrier system is designed to reactively immobilize or
substantially reactively immobilize at least one of the
components of the browning system (for example, the
amino-containing substance, the aldehyde or ketone-
containing carbohydrates, or water) from the remain-
der.

By *‘substantially reactively immobilized” is meant
that the browning system, when stored for a period of
up to two days, at a temperature of 40° F. (4° C.), will
not produce any unacceptable or significant browning
effect, and will generally provide substantially the same
browning potential upon exposure to microwave radia-
tion before storage as it will after storage.

In preferred embodiments of the invention, the Mail-
lard browning reactants are substantially reactively
immobilized so that they will not produce any unac-
ceptable or significant browning effect when stored for
periods of up to about four days, of up to about six days,
or for longer periods under appropriate conditions, at
temperatures of about 40° F., or at temperatures above
40° F. and up to about 70° F.

The aldehyde or ketone-containing carbohydrate
capable of participating in Maillard browning used in
preparing the browning agent of the present invention is
preferably a reducing sugar, more preferably an aldose
or ketose of 3-6 carbons, and most preferably glucose,
fructose, or xylose. The amine-containing substance
capable of participating in Maillard browning is prefera-
bly a proteinaceous substance and is more preferably a
peptide or protein in native or denatured form. Most
preferred proteins include soy protein, egg albumin,
whey protein, and casein. When the protein is dena-
tured to make more chemically accessible its amino

groups, it is preferably denatured by heat, acid, physical .

manipulation, or proteolytic digestion. The aldehyde or
ketone-containing carbohydrate and amine-containing
substance capable of participating in Maillard browning
may be present in a weight:weight ratio generally be-
tween about 1:10 and about 10:1 (more preferably be-
tween about 3:1 and 1:3) commensurate with a desired
degree of Maillard browning.

The carrier system of this invention preferably in-
cludes a lipid. Where the food product can provide
sufficient moisture for the Maillard reaction during
microwave irradiation, the carrier system may be free
of moisture to facilitate reactive immobilization of the

20

25

30

35

40

45

50

55

60

65

8

Maillard browning reactants. Where the food product
cannot provide sufficient moisture for the Maillard
browning reaction during microwave irradiation of the
food product, the carrier system may include water. In
this aspect of the invention, the carrier system includes
adsorptive materials (for example, silicate particles) to
adsorb the water and/or the Maillard reactants to main-
tain them in a reactively immobilized state. In an alter-
native arrangement, the Maillard browning reactants
may be maintained in a substantially reactively immobi-
lized state within a hydrophobic carrier system, such as
lipid, with the lipid separating the reactants from the
moisture required during microwave irradiation to pro-
vide the browning effect. A preferred lipid is shortening
of the type commonly used in food products, most pref-
erably a shortening derived from a vegetable oil such as
that from sunflower, corn, safflower, rape seed, soy-
bean, or other plants.

The prereaction of an aldehyde or ketone-containing
carbohydrate and amine-containing substance capable
of participating in Maillard browning under conditions
facilitating reactions leading to Maillard browning gen-
erally involves an aqueous environment, a neutral to
alkaline pH, and sufficient heat (e.g., 50° C.-100° C) to
facilitate a Maillard reaction. The reaction should be
halted before a noticeable difference in visible color is
observed when the above said agents are applied to the
product system. This halting of the reaction may be
accomplished by lowering the temperature (e.g., to
between 0° C. and 10° C.), but could also be done by
other means such as removal of water.

Substantially colorless browning systems are pre-
ferred since they can be associated with any product.
However, it is to be understood that *“colorless” in situ
is more important since the browning system should not
change the appearance of the substrate when the system
is in place prior to microwave cooking. As an example,
a cookie dough or wheat bread dough system can have
a prebrowned system applied that is “‘colorless™ on the
product.

Preferred carriers include lipids (shortenings, oils,
and waxes), water, water-lipid emulsions or polyols
such as glycerol, and emulsions of silicate particles to
adsorb and thus isolate the reactants. The preferred
carriers substantially reactively isolate the browning
agents and thus prevent or retard development of a
browned appearance prior to exposure to microwave
radiation. Isolating the browning agents can also be
attained by freezing a product coated with an aqueous
slurry of browning agents and possibly controllers to
yield an ice matrix as a carrier when used in a reliably
controlled frozen distribution system. Another aspect of
the carrier is that it may be selected to provide
browning on a high or low moisture product.

This invention further extends to a method of produc-
ing a food product with a preselected color in a prese-
lected region of the food product, said method compris-
ing:

(a) selecting at least one parameter from a group com-
prising: color producing agent, heating time value,
agent concentration value, final food color value,
substrate color;

(b) inputting said selected parameter into computer
means programmed with a functional relationship
between said selected parameter and at least one of
the other said parameters and operable to provide
output information about at least one of the other said
parameters;

5,073,392

9

(c) making a food product in accordance with said out-
put information;

(d) heating said food product;

(e) and wherein said color producing agent assists in
approximately producing said final food color value
in a preselected region of said food product.

The output information may include a final food
product color that includes hue and chroma and said
selected parameter may be at least one of a color pro-
ducing agent, heating time value and agent concentra-
tion value.

The selected parameter may include a final food
product color value that includes hue value and chroma
value and said output may include at least one of o
parameter selected from a group comprising color pro-
ducing agent, heating time value and agent concentra-
tion value.

In the method, the computer means may include
color graphics output means, and the method may com-
prise adjusting the final food product color value on the
color graphics output means until a desired color is
achieved, and outputting information from said com-
puter means relating to at least one of said parameters.

The method may comprise comparing a preselected
colored sample to color on the color graphics display
means and adjusting the color on said colored graphic
display means to approximately match the color of said
sample.

Further in accordance with the invention, a method
for producing a food product having a desired color,
comprises the steps of:

(a) using computer means to display color for a food
product as a function of at least one of the following
parameters: a browning agent selected from the
group comprising proteins and reducing sugars or
prereacted browning intermediates thereof, control-
lers selected from the group comprising metal ions,
salts, enzymes, pH adjusting agents, steam retaining

20

25

30

35

packaging, carriers, and microwave exposure time of 40

the food product;

(b) selecting a desired color for the food product and
adjusting one or more of said parameters, if neces-
sary, to provide adjusted parameters which produce a
computer color display of the desired color using said
computer means; and

(c) preparing a food product in accordance with said
adjusted parameters.

The invention further extends to a method of produc-
ing a food product with a desired color in a preselected
region of the food product, said method comprising:
(a) selecting at least one parameter from a group com-

prising color producing agent, agent concentration

value, hue value and chroma value;

(b) inputting the selected said parameter into an input

55

means operatively associated with a programmed

processor means having a program in memory means
operatively associated therewith for computing an
output parameter comprising at least one of the non-
selected said parameters based upon a functional rela-
tionship between the selected parameter and the out-
put parameter;

(c) outputting said output parameter from output means
operatively associated with said programmed proces-
sor means; and

(d) making a food product in accordance with said
selected parameter and said output parameter.

60

65

10

The invention further extends to a programmed com-
puter means adapted to output food color information,
said computer means including:

(a) a processor means operable for manipulating at least
a portion of first color information and outputting
second color information; .

(b) input means operably connected to said processor
means and operable for inputting information to said
Pprocessor mearns;

(c) display means operably connected to said processor
means and operable for displaying said second color
information; and

(d) memory means operably connected to said proces-
sor means for storage of information used by the
processor means, said memory means storing third
information relating food preparation to food product
color.

In an embodiment of the invention, the third informa-
tion may include a portion of time a color agent is asso-
ciated with a food product.

The color agent may include a browning agent, and
the browning agent preferably includes Maillard
browning reactants or intermediates.

The invention also extends to a programmed com-.
puter means for determining how to prepare a food
product to produce a predetermined desired color,
comprising: _

(a) input means for receiving input signals which are
indicative of parameters that determine the color of a
food product when it is heated;

(b) programmed memory means which is programmed
to functionally relate a desired color of a food prod-
uct to parameters that determine the color of the food
product when it is heated;

(c) processor means operatively associated with the
input means, the processor means being operative to
receive input signals which are indicative of parame-
ters that determine the color of a food product when
it is heated, the processor means being operatively
connected to the programmed memory means, the
processor means being operative to produce output
signals indicative of the color of a food product when
it is heated where the food product is made in accor-
dance with such parameters; and

(d) output means operatively associated with the pro-
cessor means, the output means being responsive to
output signals from the processor means, the output ~
means being operative to display information indica-
tive of the color of the food product when it is
heated.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows the three-dimensional
space of the L az bz system for color evaluation.

FIG. 2 schematically shows the three-dimensional
space of the L* a* b* system for color evaluation.

FIG. 3 schematically shows the three-dimensional
space of the Y 1’ y’ system for color evaluation.

FIG. 4 schematically illustrates a simplified overall
Maillard browning scheme.

FIG. 5 depicts the changes in transmittance (from 400
to 700 nm) for moist biscuit samples after treatment
with low (M0), medium (15), and high (M30) moisture
browning systems.

FIG. 6 depicts the changes in transmittance (from 400
to 660 nm) for dry biscuit samples after treatment with
low (DO0), medium (D15), and high (D30) moisture
browning systems.

5,073,392

11

FIG. 7 illustrates a lag phase for color development
in the Maillard reaction.

FI1G. 8 shows that the lag phase in the Maillard reac-
tion is temperature dependent.

FIG. 9 shows that prereaction of Maillard reactants
substantially reduces the lag phase in color develop-
ment. .

FIG. 10 illustrates the linear relationship between
concentration of protein sample and ninhydrin color
development.

FIG. 11 shows a linear relationship of protein lysine
content and ninhydrin color development.

FIG. 12 shows relationships between Gardner L and
ay values from biscuit samples and 1) protein lysine
content; and 2) slope of the linear relationship between
ninhydrin chromphore absorbance and protein concen-
tration.

FIG. 13 shows the relationship of Gardner L values
and biscuit coating thickness.

F1G. 14 shows the relationship of Gardner az and bz
values and biscuit coating thickness.

FIG. 15 shows surface or internal temperature pro-
files for biscuits heated by microwaves in an open or
closed system.

FIG. 16 shows shelf life performance in terms of
resultant Gardner L values of the browning coating on
refrigerated biscuits. .

FIG. 17 shows shelf life performance in terms of
resultant Gardner az and bz values of the browning
coating on refrigerated biscuits.

FIG. 18 shows a 1931 chromaticity diagram of bo-
vine serum albumin (BSA) and various amino acids at
different stages of Maillard browning with glucose.

FIG. 19 shows changes in biscuit surface color be-
tween storage day 1 and 6 at 0° F., 40° F. and 70° F.
prior to microwave preparation.

F1G. 20 depicts pre-to-post microwave change in
biscuit surface color after 6 days storage.

FIG. 21 shows an example of the triplet patch
browser computer display.

FIG. 22 shows an example of the triplet patch
browser computer display.)

FIG. 23 shows an example of the N by N color patch
browser computer display.

FIG. 24 shows a 1931 chromaticity diagram of vari-
ous reducing sugars at various stages of Maillard
browning in reaction with lysine.

FIGS. 25, 26, and 27 compare certain shelf life studies

performed with a food product treated in accordance -

with this invention (identified as “P""), and a food prod-
uct prepared in accordance with an embodiment se-
lected from U.S. Pat. No. 4,448,791 (identified as *C”),
when stored at 0° F. (—18° C.)—FIG. 25, when stored
at 40° F. (4° C.)—FIG. 26, and when stored at 70° F.
(21° C.)—FIG. 27. The graphs of FIGS. 25-27 plot DE
vs. days. DE is a parameter which is identified as the

10

20

25

30

45

55

“color change™ and describes the magnitude of the

difference between the color of the brown surface area
of the food product at day 0 and any given day.

DETAILED DESCRIPTION

Unless otherwise specified, all' percents reported
herein are by weight.

In one preferred embodiment of the present inven-
tion, a preferred preliminary step involves prereacting
an aldehyde-containing or ketone-containing carbohy-
drate and an amine-containing substance capable of
participating in Maillard browning under conditions

65

12

initiating a Maillard reaction scheme. This prereaction
involves the substantial completion of preliminary
chemical reactions affecting the rate of Maillard
browning, but most preferably does not result in the
development of visually noticeable colors, or results in
a substantially colorless product as defined. Amine loss
can be measured by HPLC to indicate degree of reac-
tion.

A preparation comprising reducing sugar and an
amine-containing substance capable of participating in
Maillard browning may also contain mutarotase to cata-
lyze the formation of sugar forms more reactive in the
Maillard reaction. A preparation comprising an alde-
hyde or ketone-containing carbohydrate and a protein
may also contain a protease to increase the number of
reactive amino groups thereby facilitating the Maillard
reaction. The inclusion of phosphate or carbonate, for
example as a potassium or sodium salt, may also be used
to accelerate the Maillard reaction.

The invention thus involves a process for browning a
food product during exposure to microwave radiation
for a time sufficient to prepare said food product for
consumption. This includes subjecting a food product,
prepared as described above, to microwave heating for
a time sufficient to prepare said food product for con-
sumption. The process of the present invention may
additionally involve storing the browning system or
treated food product at temperatures low enough to
inhibit a browning reaction in the applied browning
system.

The aldehyde-containing or ketone-containing ingre-
dient is generally an aldose or ketose having 3-6 car-
bons per molecule, most preferably is glucose, fructose,
or xylose. The process of the present invention may, for
example, involve a reducing sugar selected from the
group consisting of glyceraldehyde, xylose, glucose,
mannose, galactose, ribose, dihydroxyacetone, arabi-
nose, and fructose. Although one or more amino acids
may be used to react with the reducing sugar to facili-
tate Maillard browning, a protein or protein mixture is
preferred. A protein, for example, may be egg albumin,
cereal protein, whey, casein, soy protein, and/or mix-
tures thereof. Hydrolyzed proteins or peptides may also
be used.

The carrier of the present invention may be any sub-
stance capable of delivering browning agents to the
product system while preferably retaining them reac-
tively immobilized, and preferably includes a lipid. Pre-
ferred lipids include shortening such as an animal, vege-
table, synthetic fatty substance or wax used in foods but
more preferably consists essentially of shortening and
oils derived from a vegetable oil such as soy oil, cotton-
seed oil, safflower oil, corn oil, rapeseed oil, sunflower
oil, or a combination thereof. The carrier system may
also comprise a water-lipid emulsion, or a polyol such as
glycerol.

Food products particularly usable with the present
invention include imitation cheese, dairy products such

‘as cheese, and starch-based products such as biscuits,

sweet rolls, cake, bread, french toast, pizza crust, pota-
toes and products made from comminuted foods such as
wheat flour and corn meal.

Most preferably, the food product is a dough-based
product or dough-like product (hereinafier referred to
as dough-based product) such as biscuits, cookies,
breads, pastries, pie crusts and their precursors; or bat-
ter based products such as cakes, cookies, cupcakes,
muffins, pancakes, and waffles. The present invention is

5,073,392

13
usable with food products with any browning system-
treated surface dimension, which surface increases by
20% or more sometime over the history of the product
(e.g., during manufacturing, storage, cooking and heat-
ing). .

Applicants have also found that food products in the
form of biscuit dough samples, when treated with a
browning system in accordance with this invention, also
brown satisfactorily when cooked in a conventional
oven.

Due to the broad application of the browning systems
described herein, a model system was developed that
could be used to rapidly screen variables with respect to
color development. This model system allowed the
effects of variables upon browning rates to be readily
evaluated.

Filter papers with an applied browning formulation
were used as a rapid screening tool and were found to
correlate well to food product systems. Even better
model system/product correlations could be obtained if
color measurement backplates corresponding to a par-
ticular product’s optical properties were identified and
used, but are not required.

Using the model system and two food systems (bis-
cuit dough and cake batter), statistical models were
developed to aid in the selection of some preferred
browning agents and enhancers.

For the model system, a browning system coating
was spread over five water-wetted filter papers which
were then microwaved for desired times. Their color
was recorded with a Gardner colorimeter using a white
background plate. .

1.7 grams of browning coating was spread onto the
top surface of each of nine biscuits (top surface area=23
cm?2/biscuit) which were then microwaved inside a
steam-retaining pouch for 2 minutes. After completion
of the microwave cycle, the biscuits were kept inside
the pouch for 2 minutes. Gardner color measurements
were made on all but the center biscuit.

For cakes, 7 grams of browning drys 1:1 (protein:
reducing sugar) were dusted onto a pregreased (7 grams
of Crisco shortening) microwave cake pan (surface area
531.4 cm?). Pilisbury Microwave Yellow Cake batter
was deposited in the pan and microwaved for 6.5 min-
utes. Four color measurements per cake were then
taken using a Gardner colorimeter.

A box-Behnken type design was chosen to study the
effect of varying microwave time, albumin, soy, xylose,
glucose, and sodium bicarbonate on the developed
brown color of microwaved filter papers (measured by
Gardner L a7 by values).

The variables and their limits are given below:

TABLE 1
SUGAR: GLU-
VARI- MW PRO- SOY: COSE:
ABLE TIME TEIN ALBUMIN XYLOSE SODA
NAME (SECS) (RATIO) (RATIO) (RATIO) (%)
CODE A B C D E
-1 40 0.2 0.0 0.0 0.0
0 80 1.0 1.0 1.0 2.5
+1 120 5.0 infinity infinity 5.0
1) Litton Generation 11 microwave oven.
2) Supar(s) -+ Protein(s) = 50% of total formuiation.
3) % Oil = 50% — ¢ Soda.

The accuracy of the generated predictive model
eguations, as measured by the r-square value is:

5

20

25

35

45

50

55

65

14

= (.91 a; = 0.86 by = 0.78 (n = 56 runs)

The generated predictive equations for L, az, and bz
for the model system are:

L = 73.7292 — 8.3927(A) — 4.4667(B) — 1.5982(C) +
2.1045(D) — 5.5469(E) — 5.4750(B)E) + 4.3002(AXD) -+
2.7434(B)Y2 — 2.365%(A)E) + 3.1124(A)C) — 2.5482(CXD) +
1.2451(D)? + 1.6531(E)? ~ 1.4267(DXE) + 1.8850(B)C) —
1.8200{A)X(B)

a7 = 6.8605 + 4.1416(A) + 2.5350(B) — 0.2513(C) —
0.9071(D) + 2.8294(E) + 3.6075(B)}E) ~ 2.9141(A¥D) —
1.6313(B)2 — 1.9742(A)(C) + 1.6255(C)YD) ~ 1.1568(E)? +
1.1257(DXE) — 0.8210(D)? — 0.8087(CXE)

bz = 26.3620 + 2.3819(A) + 0.7850(B) — 1.4763(C) —
2.2132(D) — 0.2482(E) + 4.2300(A)(B) — 2.8568(B)? +
2.1625(B)E) — 2.427HAXE) + 2.4259(C)YD) ~ 2.0503(AXC) —
2.6300(BYD) — 1.8540(D)? — 1.8490(A)? + 1.3448

Where

A =microwave time (seconds)

B =sugar/protein ratio

C=soy protein/albumin ratio

D=glucose/xylose ratio

E =sodium bicarbonate (%). -

Two statistical methods were used to incorporate
model system information into product color predictive
equations:

Method I: The slope and intercept of actual product
color versus actual filter paper color is obtained for
their corresponding browning formulations using the
“‘error in both variables” method. This is a statistical
method similar to the commonly used “least squares”
method for fitting linear relationships. It includes, how-
ever, a treatment to incorporate variation in the x vari-
able in addition to the y variable. This intercept and
slope serve as the constants for an equation of the type
y=mx+b where x is the color value predicted from the
model system design equation and y is the predicted
product color.

Method II: The actual product color is incorporated
into the model system design as a new independent
variable. This new variable was designated F and takes
the coefficient of — 1 when it refers to the model system
and + I when it applied to the product.

Fifteen browning formulations were run on biscuit
dough samples to study the browning reaction of vari-
ables B, C, D, and E previously studied in the model
system. Variable A, time, was excluded due to the fact
that the product system has a fixed microwave cook
time.

Thirteen browning formulations were run on cake
batter samples to study the browning reaction of vari-
ables B, C, and D previously studied in the model sys-
tem. Variable A, time, was excluded for the reasons
mentioned previously. Variable E, soda, was excluded
because it creates brown specks in microwave cakes.

Both statistical methods (I and 1I) were used to incor-
porate the model system information as an aid in the
development of product color predictive equations.
The accuracy of the color predictions using the statisti-
cal methods (I and II) can be expressed as the overall
standard deviation of the difference between the pre-
dicted product color and the actual product color.
Table 2-below summarizes this information:

5,073,392

15
TABLE 2

COOKED BISCUITS
Gardner Values

Standard Deviations Number

L ar by of Runs
Method 1 4.2 24 2.8 15
Method I1 3.1 1.2 24 15

Method 11 also reports an r-square value for the com-
plete design equation (n=73, 58 filter papers and 15
biscuits) as follows: L=0.96; a; =0.90; by, =0.72.

The generated predictive equations for L, az, and bz
for the biscuit system are:

L = 65.1715 — B.4162(A) — 7.5052(B) -~ 0.230(C) +
4.8245(D) — 6.1878(E) — 8.4143(F) — 5.4750(B)(E) +
4.1343(AXD) + 2.2306(D)(F) — 3.0385(BXF) — 2.3307(AXE) +
2.2960(B)? + 1.5160(D)? + 3.0317(A)C) — 2.0016(C)}D) +
1.6427(C)E) + 1.515(E)? + 1.8850(B}(C) — 1.8200(AXB) —
0.8322(DXE)

az = 9.3443 + 4.1364(A) + 3.7612(B) — 0.4329(C) —
2.3756(D) + 2.8541(E) + 2.4114(F) + 3.6075(B)E) —
2.7354(AXD) — 1.3632(D)(F) + 1.0836(D)(E) — 1.9408(A)(C) —
12176(C)E) — 1.2869%(E)2 — 1.3640(B)% — 0.9825(D)? +
1.0739(CKXD) + 1.2262(B)(F)

by = 26.5557 + 2.3494(A) + 0.4139(B) — 1.055%(C) —
1.6218(D) — 0.729%E) + 0.3779%(F) + 4.2300(A)(B) +
1.9762(DXE) — 2.8372(B)2 ~ 2.3792(AXE) — 2.0822(A)? —
1.7320(D)? + 1.8841(B)(E) — 2.6300(B)(D) + 1.8205(C)}(D) —
2.647(A)C)

Where
A=microwave time (seconds)
B=sugar/protein ratio
C=soy protein/albumin ratio
D= glucose/xylose ratio
E =sodium bicarbonate (%)
F= +1 (for biscuits; an input of —1 will yield a pre-
diction of model system values.

TABLE 3

COOXED CAKES
Gardner Values

Standard Deviations Number

L ay br of Runs
Method 1 2.6 2.0 1.2 13
Method 11 24 1.7 1.5 13

Method 11 also reports an r-square value for the com-
plete design equation (n==71, 58 filter papers and 13
cakes) as follows: L =0.91; a; =0.84; by =0.83.

The predictive equations for L, a7, and bz and for the
cake system are:

L = 67.9230 — B8.3560(A) — 4.3888(B) — 1.5775(C) +
2.1958(D) — 5.6057(E) — 6.3698(F) — 5.5917(B)E) +
4.1804(A)D) + 2.5173(B)? — 2.4211(A}E) + 2.8752(AXC) —
1.3210(CXD) + 1.5362(B)(C) + 0.9396(D)? — 1.8200(A)B) +
1.2811(E)? — 1.1212(D)E)

az = B.5680 + 4.0798(A) + 2.4954(B) — 0.3304(C) —
1.1262(D} + 2.8549(E) + 1.8608(F) + 3.6670(B)(E) —
2.7477(AXD) ~ 1.7792(B) ~ 1.9441(A)(C) + 0.9318(C)}D) +
1.0565(DXE) — 1.0105(C)(E) — 1.0610(E)? — 0.8462(B)(C) —
0.5450(D)?

by = 30.1557 + 2.3504(A) + 1.9159(B) — 0.7553(C) —
0.6540(D) — 0.1255(E) + 3.9003(F) + 4.2300(A)XB) —
2.6023(B)2 + 1.5747(D)(F) — 2.3806(A)E) — 1.8550{A); —
1.5176(D)z + 2.1625(BXE) + 1.1309(B)(F) — 1.9772(A)C) +
1.375%(CXD) + 1.2645(D)(E) — 1.1954B)D) + 0.5272(C)(F)

Where

10

20

25

30

35

55

65

16

A =microwave time (seconds)

B =sugar/protein ratio

C=soy protein/albumin ratio

D=glucose/xylose ratio

E =sodium bicarbonate (%)

F= -1 (for cakes, an input of — 1 will yield a predic-

tion of model system values).

For both product systems studied, Method 11 was
chosen over Method I because it generated predictive
equations with better accuracy. Other product systems
might yield better predictive equations with Method 1.

The statistical approach described above is very flexi-
ble with respect to incorporating other browning agents
and browning controllers. It is also very adaptable to
other product systems. This can be accomplished using
either Method I or Method 11 described above.

The equations developed using the statistical proce-
dure described herein are not limited to the examples
given above and can be used with other food products
and browning system components. In addition, these
equations can be used in conjunction with a computer
program and the appropriate computer hardware, to
display the predicted brown color of a selected
browning system on a computer screen. This enables
the actual visual perception of the predicted color. This
is more useful to those unskilled in color science who
design microwave food products than the values associ-
ated with color measurement (e.g., L a; b;).

For example, the equations above developed for the
model system, biscuits, and cakes were incorporated
into a computer program that enables the color of the
resultant browning formula to be displayed on a com-
puter monitor.

The computer used was an Apple Maclntosh ™ -1I
with 5 megabytes of main memory, a Spectrum T™
display (1024 X768 8) board and 19" Spectrum T™
monitor.

The computer software was ParcPlac TM Smalltalk-
80 V12.2/VM1.1 with Knowledge Systems Corpora-
tion Pluggable Gauges TM package. Various software
fragments supplied by ParcPlace as “Goodies” were
incorporated in the “Color” section of the program.

These software packages running on the above hard-
ware provide basic systems functions to which are
added the See Lab functions which provide interactive
color synthesis capability.

The computer program is Smalltalk code. The lis-
tings for the Smalltalk code that comprises See Lab are
provided at the end of this specification.

For best results, the computer monitor should be
calibrated and adjusted for ambient lighting to generate
light psychophysically equivalent to the actual color.
This is accomplished by methods outlined by William
Cowan and Colin Ware in their Tutorial: “Color Per-
ception” of SIGGRAPH ’84 conference (available
through the Association of Computing Machinery).

As described herein, the color system used was the
Gardner L ag bz system. However, it is to be under-
stood that other tri-stimulus value color measuring sys-
tems can also be utilized and can be easily accommo-
dated in the computer system or the method as de-
scribed herein. These other color systems include Yx'y',
CIE L ab, XYZ and RGB. These different color mea-
suring systems can be correlated to one another as set
forth in Color Science discussed herein. The systems are
interchangeable. Further, the method of making a col-
ored food product and the computer system can be used
for other desired food colors in addition to browning.

5,073,392

17

A food product can be made with a preselected color
in a preselected region of a food product by including
the following steps:

(a) using a food preparation parameter which can in-
clude either food formula information, for example,
the component parts of the food: color producing
agent; agent concentration value; carrier type; final
food color value, which may include one or more of
the three tri-stimulus values e.g. L ar bz, hue and
chroma; substrate color; color controller information;
and can include food processing conditions, for exam-
ple, heating time, mixing conditions, pretreatment
agent/controller, particle sizing and coating parame-
ters;

(b) inputting information about one or more of the
above-described parameters into a computer means
that is programmed with a functional relationship
between the selected parameter(s) and one or more of
the other parameters. The computer means is opera-
ble to provide output information about at least one
of the other said parameters;

(c) displaying output information from the computer
means by a color graphic display means e.g. a CRT or
print output, for example the L a; by numbers or
actual colors;

(d) adjusting the color graphic display means to com-
pensate or to calibrate the screen for the particular
computer system and color graphic display means so
that uniformity of color from system to system can be
accomplished; and

(e) utilizing output information from the computer
means in making a food product in accordance with
the output information.

While the process of this invention is particularly
suitable for use in preparing food products for consump-
tion by subjecting them to microwave irradiation, the
process can also be applied to food products which are
to be prepared for consumption by cooking or baking in
conventional ovens and systems.

Further adjustings in the process can be done in ac-
cordance with the one or more of the preceding steps
until a final color which is desired or preselected is
achieved on the food product. The parameters need not
necessarily be adjusted if they were properly prese-
lected initially. The thus made food product is heated or
otherwise processed to achieve the desired or prese-
lected color. The color producing agent assists in pro-
ducing the approximate preselected color in the final
food product in a preselected region of the food.

The computer means includes a processor means
which is operably connected to an output means, for
example a color graphics display means or a printer or
the like for providing output color information. An
input means is operably connected to the processor
means. An input means is can be a keyboard or the like
or a color measuring device.

Generally, the processor means and the memory
means are a suitable digital computer such as an Apple
MaclIntosh-1I T™M, and the color graphic means can be a
color CRT and controller.

The processor means is operable for manipulating
input color information from the memory means. It can
by selection of the operator manipulate one or more of
the food preparation parameters. The memory means
stores information which can include a functional rela-
tionship between one or more of the above-described
food processing parameters and formula parameters and
preferably receives information from the input means.

20

25

30

40

55

65

18

Any of the above-described parameters can be utilized
as input in order to provide output color information.

Functional relations can be determined by using the
statistical approach as discussed.

The computer system is particularly useful with Mail-
lard browning agents and/or intermediates.

The information stored in the memory means can
include color information about a food product prior to
heating or formation and after heating.

The processor interprets the input from the memory
means or the input means and uses an algorithm and
stored data to produce output information.

A feature of the present invention is that in the
browning system and other color systems, food color-
ing builds pigments in situ during formation and/or
heating of the food product. A paint system, for exam-
ple, has a pigment formed prior to introducing into a
carrier system. Further, food substrate color, before
and/or after heating, should be included in the evalua-
tion because of the somewhat transparent nature of the
formed color. The food substrate can affect the final
food product color. Further, another important feature
of the present invention is that it can predict color of a
food product as it changes with time or time and tem-
perature or perhaps more accurately total heat input.
Current color predicting computers (like those used for
paint) do not concern themselves with how color
changes with time or temperature. Further, the present
invention can also accommodate pigments and dyes as
color agents. Another complication for food systems is
that a color agent can migrate into or from an initial
position in the food product substrate;

In order to facilitate the more rapid development of
browning, the use of prereacted typical browning ingre-
dients was studied and found to be feasible. 1t is well
documented that the complex Maillard browning reac-
tion proceeds through many steps prior to color devel-
opment. When a prereacted but substantially colorless
mixture of reducing sugar and amino acid and their
reaction products, prepared as described below, was
applied to a surface and subjected to microwaves, it was
determined that browning was achieved sooner than
when the same ingredients, but not prereacted, were
analogously used.

A study of a model system with glutamine and glu-
cose was conducted. Through reaction of these two
compounds in solution, it was observed that a lag phase
in color development occurred (FIG. 7). In this system,
at 100° C., the colorless lag phase was about 6 minutes.
It was determined, by running this reaction at various
temperatures, that the lag phase was temperature de-
pendent (FIG. 8). More important to the objectives of
this invention, the lag phase could be eliminated for in
situ browning. A sample of the reactant solution was
heated to a point just prior to development of measur-
able browning. The reaction was then radically slowed
by rapid cooling. This prereacted solution was com-
pared to a dissolved reactant solution by spectrophoto-
metrically measuring color development with time at
100° C. The results clearly indicated that the lag phase
was eliminated in this manner (FIG. 9).

The reduction of lag time in color development with
prereacted as compared to non-prereacted systems was
noted. A precipitate formed when ethanol was added 1o
a prereacted solution. Comparing the browning devel-
opment of these precipitates to the browning develop-
ment of the relative initial reactants under controlled

5,073,392

19
microwave conditions indicated significantly higher
browning for the prereacted samples.

To determine whether prereacted solutions could aid
in the microwave browning of specific food products,
tortillas and pizza crusts were evaluated. Prereacted
solutions of glutamine and glucose were applied to
surfaces of the products. Solutions of the initial reac-
tants were similarly applied to control products. Objec-
tive color evaluations. of the two types of samples
showed significantly higher browning for the prere-
acted samples for both pizza crusts and tortillas. See
Tables 4 and 5 below.

TABLE 4
TORTILLA SAMPLES
Prereacted Initial Untreated
Reactants Reactants Control
L 729 78.9 81.6
ar —~0.5 -1.8 -~1.6
br 15.6 13.2 12.1

All scores are statistically different with a confidence
level of 99.99%

TABLE §
P1ZZA CRUST SAMPLES
Prereacted Initial Untreated
Reactants Reactants Control
L 51.9 57.0 64.3
ar 53 4.1 2.0
bz 17.3 17.1 19.4

All scores are statistically different with a confidence
level of 99.9999% (except by value prereacted versus
initial reactants).

The term “‘coparticulates” as used herein describes
formation of uniform particles containing two or more
browning agents. Such coparticulates may be prepared
by first dissolving or suspending the Maillard browning
reactants in water. After such reactants, for example,
albumin and glucose, are dissolved or suspended, the
mixture is then substantially dehydrated, for example,
by lyophilization or spray drying. The dry matter left
after lyophilization or spray drying is preferably ground
to produce a fine powder. This fine powder, which
contains the protein and reducing sugar in an intimate
physical relationship and/or prereacted state, is then
usable to provide Maillard browning in a desired period
of time. Such coparticulates may be suspended in a
carrier and applied to a food product. The carrier serves
to substantially reactively isolate the coparticulate reac-
tants from water so that Maillard browning does not
immediately ensue. When the suspension of coparticu-
lates is applied to a food product and microwave energy
is applied, the coparticulates are exposed to water from
the food product and undergo Maillard reactions lead-

20

25

30

45

50

ing to browning. Such coparticles contain the reactants '

in an intimate physical relationship and/or prereacted
state so that they may further react upon exposure to
heat and moisture. When the reactants are present but
are not intimately associated and/or prereacted, the in
situ Maillard browning reactions are hampered even
though moisture may be present. Many of the compo-
nents of the present invention (e.g., the various protein-
aceous substances and reducing sugars) may be utilized
as coparticulates to control browning of microwave-
prepared food products. It may be viewed that the
protein acts as a *sponge” for reducing sugar in aqueous
solution during as well as after lyophilization. Polarized

65

20

light microscopy of coparticles indicates a homogeneity
of structure.

Browning “drys” are individual particles of Maillard
reactants which have never been mixed in liquid form.
These dry particles may be suspended in a lipid and
applied to a food product. Upon microwaving, the
“drys” brown more slowly than corresponding prere-
acted intermediates or coparticles. This may make such
a system useful where long periods of microwave expo-
sure are required to prepare a product. The use of
coparticulates is more effective than the application of
“drys” for food products requiring more rapid
browning.

Another similar embodiment of the present invention
involves the formation of particles of browning agents
and browning system insoluble adsorptive particles
such as heterogeneous silicate particles to which
browning agents have been adsorbed. Specifically, said
browning particles may be formed by blending an aque-
ous solution of browning controller (e.g., potassium
phosphate), protein (e.g., whey), and reducing sugar
(e.g., xylose) with calcium silicate until a smooth paste
is produced. The above paste can then be suspended in
a carrier system, such as shortening and glycerol, and
applied to a food product. By adsorbing the browning
agents or reactants onto a particle, the local concentra-
tion of browning agents is effectively increased. Ad-
sorbed water promotes browning agent solubilization
during microwave heating, thereby increasing the rate
of Maillard browning. The silicate particles, by adsorb-
ing the Maillard browning reactant and the water, have
the effect of retaining them substantially reactively
immobilized in the carrier system so that no significant
browning effect will occur prior to microwave irradia-
tion. Browning may be adjusted by varying the amounts
of reducing sugar, protein, and water adsorbed to the
silicate particle. Several other support particles were
found suitable to effect browning, including silicon
dioxide (such as Cabosil, Zeosyl, and Zeothix) and so-
dium aluminum silicate (such as Zeolex).

The coparticulate and silicate approaches to
browning have proven to be superior to the application
of drys. Many of the components of the present inven-
tion (e.g., the various proteinaceous substances and
reducing sugars) may be utilized in a particle containing
system to effect browning of microwave heated food
products.

It was observed that browning reaction rates were
increased in the presence of phosphates, independent of
the pH of the system. This observation was confirmed
in a microwave environment using model systems. The
results indicated that the addition of phosphates signifi-
cantly increased the browning color intensity of a
Xylose:albumin:shortening (1:1:2) system after 90 sec-
onds of microwave time. Table 6 indicates that the
phosphate effect was significant despite decreases in pH
(KH,PO4 was the phosphate source used).

TABLE 6
MODEL SYSTEM PHOSPHATE EVALUATION
Sample pH Average L Value*
Control 7.5 67.1
PO4/NaOH 6.7 54.6
PO4 5.8 64.8
PO4 (2X) 5.5 61.7

*Number of samples equals 5.

5,073,392

21

There is support in the literature for the observed
effect of phosphates (J. Sci. Fd. Agric., 17:245, 1966).
Citrates and carbonates have also been observed to
enhance browning.

As described earlier, increasing the amount of open
chain from of the sugar enhances the browning reaction
rate. This is especially significant because, in most of the
systems studied, sugar levels were browning rate limit-
ing. Mutarotase was evaluated with the model system
procedure. Mutarotase was obtained from Sigma
Chemical Company, St. Louis, Mo. Mutarotase (aldose-
1-epimerase) catalyzes the interconversion of alpha-D-
glucose and beta-D-glucose involving an open-chain
form. Results indicate a significant increase in brown
color when mutarotase was present in the glucose:al-
bumin:shortening system. The concentration of mutaro-
tase employed was 50 units/0.69 g of a 1:1:2 albumin:-
glucose:shortening browning formula where one unit
increases the spontaneous mutarotation of alpha-D-
glucose to beta-D-glucose by 1.0 micromole per minute
at pH 7.4 at 25° C. The average L values (n=5) after
120 seconds of microwave exposure was equal to 68.7
for mutarotase-supplemented samples and 73.8 for uns-
upplemented control samples.

The degree of isolation and protection afforded the
browning agent(s) by the carrier system can be modi-
fied to fit the distribution needs of the product. The
invention described herein provides a method of mak-
ing a microwave surface browning formula capable of
performing in any food distribution system (e.g., frozen,
refrigerated, or shelf stable) by selecting an appropriate
carrier.

The following experiment was conducted to demon-
strate the effect of distribution temperature and carrier
composition on browning system stability and reactiv-
ity. The examined temperature ranges reflect the three
most common distribution temperatures encountered in
the food industry, namely frozen (—18° C.), refriger-
ated (4° C.), and shelf stable (21° C.). The carriers evalu-
ated were chosen to reflect a wide range of ability to
protect and isolate the browning reagents under the
three distribution temperatures mentioned above. The
three carriers evaluated were shortening, oil, and water.
In addition, dry browning reagents were applied di-
rectly to the product surface in an attempt to evaluate
the effect of no carrier. The browning system used in
this study consisted of a 1:1 soy protein:xylose mixture
dispersed into an equal amount (by weight) of shorten-
ing, oil, or water. In the case of the dry ingredients, an
equivalent amount of soy protein and xylose to that
used in the carrier based systems was applied.

The experiment consisted of applying the various
browning systems described above to the surface of
unleavened dough. Treated biscuit dough samples were
then placed into plastic pouches, flushed with CO»,

5

—

30

40

45

sealed and stored under the three temperature ranges

mentioned earlier. The L, az, by values of the sample
surfaces were evaluated after 1, 3, and 6 days storage for
each distribution temperature prior to and after micro-
wave preparation.

FIG. 19 graphically depicts the change in surface
color between storage day one and six prior to micro-
wave preparation. Color change is defined as the square
rootof (L1—L6)24+(arl1—az6)2+(bs1—by6)2); where
Ll,azl, byl and L6, 216, b6 are equal tothe L, az, bz
values recorded after storage day one and six respec-
tively. FIG. 19 shows at —18° C. all four carriers to
provide about the same degree of browning agent pro-

65

22

tection as evidenced by the relatively small extend to
color change over the six-day storage period. However,
at 4° C., a discernible trend in browning system color
stability was observed. At refrigeration temperatures,
the extent of ingredient stability and protection pro-
vided by the different systems varies .as follows (listed
from most to least stable): shortening oil water no car-
rier system. Lastly, at 21° C. in this test, the only carrier
capable of preventing the browning reagents from pre-
reacting over the six-day study period was very hydro-
phobic (e.g., shortening). ;

FIG. 20 graphically depicts the pre-to-post mi-
crowaving change in biscuit sample surface color after
six days storage. The greater the degree of protection
provided the product, either by carrier system selection
or distribution temperature, the greater the extent of
microwave color development as evidenced by larger
pre-to-post microwaving color differences. Hence,
shortening, which provides the same extent of protec-
tion, displays the same relative amount of microwave
color development at all three distribution tempera-
tures. More temperature sensitive browning systems
(e.g., dry browning ingredients) display an inverse rela-
tionship between storage temperature and microwave’
heating color development (i.e., the lower the storage
temperature, the greater the microwave color develop-
ment and vice versa).

The findings of this study indicate that it is possible to
produce a microwave browning system capable of per-
forming over a wide range of distribution temperatures
by selecting an appropriate carrier system.

Another means of browning system control is that of
product and browning system moisture contents. In an
attempt to evaluate the relationship between product
and browning system moisture contents and microwave
browning, a series of experiments were conducted in
which low and high moisture product systems were
treated with low, medium, and high moisture browning
systems. The *“moist product” system used was Pills-
bury biscuit dough samples (total moisture=42%)
while the “dry product” system used was microwave
precooked Pillsbury buttermilk biscuit samples (total
moisture= 16%). The formulations of the low, medium,
and high moisture browning systems evaluated are
given below:

Low Moisture

25% xylose
25% soy protein
50% shortening

Medium Moisture High Moisture

25% xylose
25% soy protein
35% shortening
15% water

259% xylose
25% soy protein
20% shortening
309% water

The moist and dry samples were coated with the
browning systems as prepared in Example 1. FIG. 5
graphically depicts the changes in transmittance (from
400 to 700 nm) for the biscuit samples after treatment
with low, medium, and high moisture browning sys-
tems. As FIG. 5 shows, as the moisture content of the
browning system is increased, there is a corresponding
increase in light transmitted over the visible spectrum.
As the moisture content of the browning system was
increased, less microwave browning occurred. How-
ever, when the dry samples were treated and prepared
in a similar fashion, the results were different. FIG. 6
graphically depicts the changes in transmittance (from
400 to 700 nm) for dry samples treated with low, me-
dium, and high moisture browning systems. Upon close

5,073,392

23

examination of FIG. 6, it would appear that for the dry
system, the medium moisture browning system was the
better of those tested for microwave browning color
development. Although the high and low moisture
browning systems browned generally to the same extent
on the dry biscuit samples, as evidenced by their similar
transmittance spectra; neither browned to the extent
that the medium moisture browning system did. Hence,
by varying the moisture content of either the product or
browning system, it is possible to control microwave
browning.

A particularly effective and widely applicable micro-
wave browning system is comprised of three basic in-
gredients: a reducing sugar, an amino compound (pro-
tein), and lipid. A browning system composed of xylose
and proteins suspended in a shortening matrix has been
used thus far to brown the surfaces of biscuit dough,
cake batter, pastry dough, roll dough, coffee cake bat-
ter, bread dough, pizza crust dough, and french toast.
Advantages of this system include its simplicity, adapt-
ability to existing products and processes, ability to be
adjusted to coincide with product textural develop-
ment, stability through shelf life, and dual applicability
to microwave and conventional preparations. Several
means of controlling the development of color have
been identified. These include adjusting the concentra-
tions of the reactants, as well as the use of pH level,
phosphates, intermediates, coparticulates, mutarotase,
protease, steam-retaining packaging, and the use of
dielectric affecting salts. Reducing sugars and amino
compounds are - reactants required for Maillard
browning while the lipid serves as a carrier that sup-
presses Maillard browning for a required shelf life but
allows rapid reaction on exposure to microwave radia-
tion. A third component required for Maillard
browning, water, can be provided by the food system
itself as a result of exposure to microwave energy and-
/or may be supplied by the carrier in certain applica-
tions. The ratios of the three components relative to one
another play an important role in overall system perfor-
mance as does the amount of browning coating applied
to the surface. A system composed, by weight, of one
part sugar to one part protein to two parts vegetable
shortening has performed very effectively in many sys-
tems.

Although the mode of incorporation of the browning
system to various products can vary, the general operat-
ing principle of the browning system does not change.
In most product systems, the browning coating was
applied to the surface of the product as a thin layer.
Such a coating may comprise browning agents in vari-
ous forms such as drys (previously unmixed and unre-
acted), coparticulates from reactants previously mixed
in a solution and the solvent removed, or intermediates.

An important advantage of a browning system de-

25

30

40

45

50

55

scribed ‘herein is that during refrigerated storage, the

browning agents (sugar and protein or intermediates)
are held, reactively immobilized in a lipid environment
of extremely low water content. Such a system effec-
tively retards the Maillard reaction rate to the extent
that browning does not appreciably occur during stor-
age. Reactive isolation is not needed when there is a
very short shelf life, for example, in a commercial set-
ting. Water can be used as a carrier for a product when
it is to be microwave heated immediately after applica-
tion. This system is particularly useful in batter and
dough-based systems.

65

24

Maillard browning reactions between various amino
compounds (e.g., amino acids and proteins) and a given
reducing sugar source have been shown to develop
different observable brown hues under identical reac-
tion conditions. Similarly, Maillard Browning reactions
between various sugar sources (e.g., glucose, fructose,
and xylose) and a given protein source have been shown
to develop different observable brown hues under iden-
tical reaction conditions.

The reason different proteins produce various brown
hues under identical reaction conditions is a function of
the reactivities, and accessibility, of their component
amino acids. The more reactive and accessible the com-
ponent amino acids of a given protein source, the
greater its browning potential.

The reactivity of the protein used in the browning
systems has an important effect on the final hue and
color intensity observed in the product systems. The
brown color produced by the browning system upon
exposure to microwave energy appears to be, in part, a
function of the type and reactivity of protein employed.

The effect of protein on color formation was exam-
ined for microwave-prepared biscuit dough samples
treated with lipid browning systems containing various
food proteins. The results were evaluated by Gardner
colorimetric analysis. The hue values of the frowning
systems evaluated varied from 578.90 nm (nanometer)
for gluten to 588.25 nm for sodium caseinate with
chroma ranging from 42% for gluten up to 64.7% for
albumin. The results of this study indicated that chroma
and hue are functions of both individual protein amino
acid composition and the overall extent of Maillard
browning.

Experiments examining the color development path-
way of various amino acid and protein sources have
shown that regardless of the amino compound em-
ployed in the browning system, all follow the same
general color development trajectory when plotted on
an x', y’ 1931 chromaticity diagram, differing only in
overall magnitude after a given reaction time (see FIG.
18). The effect of amino acid/protein type on Maillard
browning color development appears to be a scalar
function with directional coordinates fixed and magni-
tude a function of the reactivity of the amino acid/-
protein source used and reaction time.

This provides another means of browning control, for
example, a product requiring a relatively long micro-
wave cooking time could use a protein of lower reactiv-
1ty.

A study was conducted in which the amount of nin-
hydrin-reactive lysine present in a series of food prote-
ins was experimentally determined. The lysine content
was correlated with Gardner colorimetric values ob-
tained from biscuit dough samples treated with the
microwave browning system containing these proteins.
A linear relationship was found between the absorbance
of the ninhydrin chromophore and concentration of
protein sample (see FIG. 10). The extent of absorbance

‘(slope of the linear relationship) was a linear function of

the lysine content of each protein sample (see FIG. 11).

Gardner L and a values obtained from biscuit dough
samples exposed to microwaves after treatment with
microwave browning formulas incorporating the vari-
ous proteins showed a linear relationship when plotted
against gm Lys/100 gm protein and extent of chromo-
phore absorbance (e.g., the slope of the linear relation-
ship between ninhydrin chromophore absorbance ver-
sus mg protein, see FIG. 12).

5,073,392

25

A direct relationship was observed between the
amount of lysine per given amount of protein, ninhydrin
chromophore absorbance, and extent of Maillard
browning (as reflected by lower Gardner L values and
higher Gardner a values). The determination of ninhy-
drin chromophore absorbance values could be a quick
and efficient screening method for predicting the per-
formance level of a given protein in a Maillard-based
microwave browning system. One could specifically
choose a protein source of a given reactivity such that
the product could brown to an appropriate extent upon
completion of the microwave cooking cycle. In addi-
tion, the ninhydrin evaluation could also be an effective
test to assure uniform performance of a given protein
(e.g., a quality assurance tool in a manufacturing facil-
ity).

In addition to protein reactivity, the physical condi-
tion of the protein employed in the browning system
was found to have an effect on browning color develop-
ment. Physical shearing (denaturation) of proteins in-
creased the rate of Maillard browning. Gardner colori-
metric analysis of biscuit samples treated with browning
compounds which had been sheared in an electric mixer
prior to product application resulted in lower Gardner
L values and higher Gardner az values as compared to
those values obtained with unsheared control samples.

TABLE 7

BISCUIT SURFACE L, az, by VALUES
VERSUS BROWNING SYSTEM SHEAR TIME!

MIX TIME
0 (min.) 7.5 (min.) 15 (min.)
L 60.0 58.9 56.1
ar, 119 13.1 13.8
bz 28.2 282 273

1Used a Hamilton Beach Scovill electric mixer (mixing speed set on 5)

By shearing the protein browning system prior to
product application, an increased number of primary
and secondary amino groups were likely exposed and
created via the disruption of the proteins quaternary,
tertiary, secondary, and primary structure. Increasing
the total number of possible Maillard reaction sites ef-
fectively increased the overall extent of Maillard
browning. Denaturing the protein through other means
may have a similar effect.

Experiments examining the color development path-
way of various reducing sugars have shown that regard-
less of the sugar employed in the browning system, all
follow the same general color development pathway
when plotted on an x’, y' 1931 chromaticity diagram,
differing only in overall magnitude after a given reac-
tion time (see FIG. 24). The effect of reducing sugar
type on Maillard Browning color development appears
to be a scalar function with directional coordinates fixed
and magnitude a function of the inherent reactivity of
the reducing sugar used and reaction time.

In general, the greater the amount of microwave
browning system applied to a given product, the more
extensive color develops. The relationship between
quantity of browning system applied and color devel-
oped in a biscuit model system was examined. The top
surface of Pillsbury buttermilk biscuit dough samples
were coated with various amounts of a 1:1:2, by weight,
soy protein:xylose:shortening browning system ranging
from 0 to 2.5 grams. Upon completion of microwave
heating, biscuit surface color was evaluated via Gard-
ner colorimetric analysis.

—

0

]

0

30

35

40

45

50

60

65

26

The findings of this study are graphically depicted in
FIG. 13 and 14. The plot of “average Gardner L values
versus grams browning system applied per biscuit™
clearly shows that biscuit surface color darkens quite
rapidly (reflected by the rapid drop in observed L val-
ues from 71.4 to 57.7) as the amount of the browning
system applied to the biscuit sample surface increased
from 0 to 1.5 grams. Browning system applied in excess
of 1.5 grams produced little, if any, further effect on the
observed L value of the biscuit sample surface.

Gardner az values, which quantify the amount of
green to red coloration, were observed to increase (i.e.,
become more *‘red”) as the amount of applied browning
system increased from 0.5 to 1.5 grams. Amounts of
applied browning system in excess of 1.5 grams resulted
in a slight decrease in observed Gardner ay values.

Gardner bz values, which measure the extent of blue
to yellow coloration, were not significantly affected by
the quantity of applied browning system.

The results of this study also showed that the hue and
chroma of microwave prepared biscuit samples coated
with about 1.54/—0.2 grams browning system most
closely approximate the hue and chroma of a conven-
tionally baked biscuit control (see FIGS. 13 and 14).

Different reducing sugars are known to have an ef-
fect on the rate of Maillard browning. Of the reducing
sugars studied, xylose has been found to brown most
effectively. However, glucose, particularly in conjunc-
tion with inorganic phosphate catalysts, pH-affecting
controllers, intermediate formation and/or coparticu-
late formation, is also useful. Table 8 shows the Gardner
L, az, by values obtained from biscuit dough samples
treated with a browning system employing glucose in
conjunction with sodium bicarbonate (a pH affecting
controller). Note that as % soda and pH increases,
Gardner L values decrease while a7 values increase.

TABLE 8
1:1:2 GLUCOSE:SOY PROTEIN:SHORTENING SYSTEM

ave. Gardner values
% Soda L values ay values bz values pH
0.00 71.5 337 23.0 6.58
1.96 65.4 6.1 242 7.25
3.85 61.0 7.6 23.7 7.48
5.66 59.7 8.7 24.1 7.56
9.10 574 9.3 235 1.72

Colot development is directly proportional to the
amount of time the microwave browning system is
exposed to microwave energy and, when applicable, the
steam environment created thereby. Luxtron tempera-
ture studies of biscuit dough browning systems show
that the longer the system is exposed to microwave
energy, the greater the observed temperature (surface
and ambient) and subseguent color (browning) develop-
ment.

EXAMPLE 1
BISCUITS

A biscuit dough microwave browning system was
designed to utilize browning chemistry and packaging
technology.

1.78 grams of a browning system comprising one part
soy protein, one part xylose, and two parts solid vegeta-
ble shortening was applied with a spatula to the top
surface of Pillsbury Buttermilk Biscuit dough samples
(top surface area=23 c¢m?2). The browning system was
pliable enough for smooth application.

5,073,392

27

Nine coated samples were placed into a pregreased
plastic pan. The pan of samples was subsequently sealed
in a plastic pouch (93" X 11%") to retain product mois-
ture and to protect against atmospheric contamination.

Prior to microwave heating, the pouch was punc-
tured four times (two punctures at each end) to allow
for steam venting during the microwave cooking cycle.
The samples were subjected 1o 2 minutes of microwave
heating in a Litton Generation II microwave oven,
oven power set on “high”. Upon completion of the
microwave cooking cycle, the bisciit sample package
was removed from the microwave oven and allowed to
rest undisturbed for approximately 2 to 3 minutes. Dur-
ing this 2-to-3 minute post-microwave exposure period,
a significant amount of browning occurred. Upon com-
pletion of the post-microwave resting period, the outer
plastic. package was removed, thereby releasing the
entrapped steam and arresting the browning process.
The microwave prepared biscuits appeared golden
brown similar in appearance to conventionally baked
biscuit products. _

Results obtained from temperature -studies of
pouched versus nonpouched package systems showed
significantly lower surface and atmosphere tempera-
tures recorded for the nonpouched system when com-
pared to the pouched system (see FIG. 15). This indi-
cates that in the pouched system there was sufficient
energy and/or moisture available to facilitate the
browning reaction mechanism with this particular se-
lection of browning agents and controllers.

EXAMPLE 2
BISCUIT SILICATE APPLICATION

A silicate based microwave browning system was
tested.

Whey protein (32.64 g) and xylose (16.76 g) were
dissolved in 100 ml of water. Calcium silicate (29.92 g)
was placed in a Oster blender and blended on a high
setting for 10-15 seconds to fluff the silicate. The pro-
tein/xylose solution was added in two equal aliguots
and blended after each addition for 30-35 seconds on
high to make a smooth paste. Melted Crisco shortening
(61.92 g) and glycerol (30.76 g) were added to the water
silicate paste and blended for 30-35 seconds on high.
The paste was scraped into the center of the bowl and
blended for an additional 30-35 seconds. Upon comple-
tion of blending, the silicate based browning system was
stored at 5° C. until use. :

2 g of refrigerated silicate based browning system
was spread evenly onto the surface of Pillsbury Butter-
milk Biscuit dough samples (see Example 1). A total of
eight biscuit dough samples were prepared as described
above and placed into a hard plastic tray and sealed in
a plastic pouch with the corners perforated to permit
steam venting. The biscuit dough samples were baked in
a Litton Generation 1I microwave oven on high for 2

30

35

40

minutes. After the 2-minute cooking cycle and a subse-

quent 2-minute room temperature cooling period, the
microwave browned biscuit samples were removed
from the pouch. After the microwave cooking cycle
and room temperature cooling period, the biscuits ap-
peared golden brown, similar in appearance to conven-
tionally baked biscuit products.

EXAMPLE 3
CAKE

Because Pillsbury microwave yellow cake is a batter
system, the browning system (a 1:1:2, by weight, soy

65

28

protein: xylose:shortening mixture) was applied to the
cooking vessel such that it would be in contact with the
outer surface of the batter throughout the microwave
cooking cycle. This was accomplished in two manners:
1) By manually applying browning system to the inte-
rior of the microwave cake pan (surface area=531.4
cm?2) prior to the addition of cake batter, and 2) By
dusting a dry 1:1 mixture of browning ingredients (e.g.,
soy protein and xylose) to a cake pan pregreased with
shortening.

After the cake batter was prepared (per the instruc-
tions on the package), it was poured directly into a
pretreated cake pan, and microwaved for 7 minutes
(oven power set on “high”). A litton Generation II
microwave oven Model #2492 (power step 1) was used
in all of the cake experiments described herein. Upon
completion of the microwave cooking cycle, the cake
was immediately inverted and removed from its pan.

The color and textural properties of the microwave
prepared browned cake closely approximated those of a
conventionally prepared cake. A golden brown dehy-
drated crust developed.

EXAMPLE 4
SHELF LIFE

The shelf life performance of the microwave
browning system of the present invention was evaluated
in the buttermilk biscuit dough model system as de-
scribed in Example 1. Throughout a seven-week study
period, biscuit dough sample packages were periodi-
cally removed from refrigerated storage, microwaved,
and evaluated via Gardner colorimetric analysis. Gard-
ner L and az values remained virtually unchanged while
bz values varied slightly (no more than 15%) through-
out the seven-week study (see FIGS. 16 and 17). In
addition, the browning system browned to the same
relative extent upon microwave preparation regardless
of refrigeration storage time.

EXAMPLE 5
COPARTICULATE

Enhancing browning through prereaction may be
accomplished by suspending the browning agents in
water and drying them in such a manner as to yield dry
solids {(coparticulates). For example, a suspension was
made by mixing 25 grams of albumin and 25 grams of
xylose in 100 grams of water. This suspension was
freeze dried for three days in a small laboratory freeze
drier and the resultant coparticulate was evaluated ver-
sus the initial reactants in a shortening matrix on micro-
wave biscuits. In each evaluation, nine samples were
each coated with 1.7 grams of the browning system,
placed in a microwaveable baking vessel inside a steam
retaining pouch, and cooked on high in a Litton Gener-
ation II microwave oven for 2 minutes. The system was
allowed to sit an additional 2 minutes after microwaving
prior to opening the pouch. Eight of the nine biscuits
microwaved in each run were evaluated using a Milton
Roy spectrophotometer. Table 9 shows the averages of
the resultant L az by color values:

TABLE 9
Solids/Shortening Gardner Color Value
Sample Type Ratio L ar by
xylose/albumin 1:2 81.1 -2.0 342

contro} 1

5,073,392

29
TABLE 9-continued

Solids/Shortening Gardner Color Value

Sample Type Ratio L ag b
xylose/albumin 1:1 70.1 7.4 53.2
control 2)

xylose/albumin 1:2 70.7 7.6 54.7

coparticulate

The data indicated that by producing the coparticu-
late, the reactivity of the system has been enhanced, as
compared to using non-coparticulate starting materials.

EXAMPLE 6

INCORPORATION OF BROWNING SYSTEM
INTO THE CRUMB OF A BREAD PRODUCT BY
BLITZING

Two small loaves of microwave bread-like products
were made as follows to demonstrate interior browning.
For each loaf, the dry ingredients (see formulas below)
were premixed by hand. The shortening and water was
then added and mixed in briefly with a spoon. The
resultant dough was hand kneaded for 5 minutes and
shaped into small loaves. The dough was allowed to
-proof for 10 minutes and then baked in a Litton Genera-
tion II microwave oven for 4 minutes. After this time,
the loaves were cut in half and the color of the crumb
was compared. The test loaf, containing the browning
agents xylose and soy protein, had a browned crumb
color whereas the control was white.

Contro} Test

flour 100 grams flour 100 grams
shortening 7 grams shortening 10 grams
sucrose 7 grams xylose 10 grams
GDL 1.5 grams soy protein 10 grams
soda 1 gram soda 1 gram
water 60 grams GDL 1.5 grams

~water 65 grams

EXAMPLE 7

INCORPORATION OF BROWNING SYSTEM
INTO THE INTERIOR OF A PRODUCT SYSTEM
BY LAMINATION

Approximately 70 g of a 1:1:2, by weight, soy pro-
tein:xylose:shortening mixture was spread onto one side
of an unraveled 152 g piece of Pillsbury Pipin’Hot ®
Loaf dough using a butter knife. The treated loaf was
rerolled in such manner that the coated surface re-
mained in the interior of the product. The prepared loaf
was then microwave heated in a Litton Generation 11
microwave oven set on high for 4 minutes. Upon com-
pletion of the microwave cooking cycle, browning for
the load interior had occurred. The browning coating
did not diffuse to any significant extent into the crumb
structure of the load. Rather it remained isolated on the
surface to which it was applied. As a result of laminated
application, a brown swirl pattern developed within the
treated loaf. No observable browning occurred in an
untreated control sample.

EXAMPLE 8
ELECTROLYTE BROWNING ENHANCEMENT

A browning system comprising of 90% weight basis
the formula described in Example 2 and 10% NaCl was
prepared as outlined in Example 2. Approximately 2.5 g
of the browning system described above was applied to

ot

5

25

30

35

45

30
two separate Pillsbury Buttermilk Biscuit dough sam-
ples. The samples were covered with Saran Wrap and
baked in a Litton Generation II microwave oven on
high for 90 seconds. Upon completion of the micro-
wave cooking cycle, the samples were allowed to cool
for 2 minutes after which time the Saran wrap was
removed and Gardner colorimetric values taken. Two
control samples were prepared, as described above,
using the silicate based browning formula outlined in
Example 2 (without the addition of NaCl). Table 10
shows the Gardner L, az, and bz values observed for
biscuit samples treated with the two browning systems
described above.

TABLE 10

GARDNER L, a;, AND b; VALUES
CONTROL VERSUS 10% NaCi BROWNING SYSTEM

CONTROL 10% NaCl
L 62.3 48.9
az 7.5 8.5
b 226 17.8

As the Gardner values show, the samples coated with
10% NaCl browning system browned to a greater ex-
tent than control browning system treated biscuits.

Infrared camera analysis of the surface temperature
of the 10% NaCl browning system-treated biscuit sam-
ples showed an increase in surface temperature upon
exposure to microwave energy when compared to the
control browning system-treated biscuit dough samples.
One of the advantages of electrolyte (NaCl) addition is
that a desired degree of browning may be achieved in a
shorter amount of time using smaller amounts of
browning agents (e.g., reducing sugars, proteins, and
controllers).

EXAMPLE 9

COMPARATIVE SHELF LIFE STUDY AT
VARYING STORAGE TEMPERATURES

Comparative studies were conducted with a
browning system in accordance with the present inven-
tion and a browning system falling within the scope of
U.S. Pat. No. 4,448,791 to Fulde, et al., and assigned to
Campbell’s Soup Company.

The browning system selected from the 791 Camp-
bell patent comprised yeast extract 12.5%, xylose
12.5%, shortening 30%, flour 25%, water 20% (all by
weight).

The browning system in accordance with the instant
invention, comprised soy protein 25%, xylose 25%,
shortening 50% (all by weight).

These two formulations were spreadable formula-
tions and were used to coat the top surface of biscuits.
Each biscuit was coated with 1.7 grams of the formula-
tion. Nine biscuits were put into microwave brownie
trays and placed in a pouch. The pouch was evacuated
and flushed with carbon dioxide to avoid color changes
in the dough due to oxidation. The biscuits stored at
room temperature were unleavened. The biscuits were
then placed in storage at three different temperatures
(0°, 40°, and 70° F.). Colorimetric analysis was per-
formed on eight of the nine biscuits in the tray at various
time intervals (see FIGS. 25, 26, and 27) before mi-
crowaving. In these figures, the biscuits treated with the
formulation in accordance with this invention, are indi-
cated on the graphs as “P”. The biscuits treated with a

5,073,392

31
browning formulation in accordance with the 791
Campbell's patent, are indicated as “C”.

These results show that the color of the biscuit sam-
ples treated with the 791 Campbell’s formulation
changed color more than the biscuits treated with for-
mulations in accordance with this invention, over time
at 40° F. and at 70° F. Both formulations were pretty
close at 0° F. (as shown in FIG. 25). The graphs show
DE vs. days. DE is a parameter which shows “color
change” and describes the magnitude of the difference
between the color of the biscuits at day-0 and any given
day.

At 0° F. there is very little difference in DE between
the two samples. Both are frozen, and the reactants
should be reactively immobilized in both cases. The
change in the first day for both samples appears to indi-
cate that there was some residual oxygen which may
have caused the dough to gray slightly. That would
normally take about a day. The curves after day 1 for
both samples are fairly flat. At 40° F. there seems to be
a significant difference in DE at day 1 between the two
formulations. The formulation in accordance with the
791 Campbell's patent has a definite positive slope,
while the formulation in accordance with this invention
seems to be unchanging after the second say. The for-
mulations in accordance with the '791 Campbell’s pa-
tent are browning slightly.

The difference is more significant at 70° F. The for-
mulations in accordance with this invention show the
same type of curve as at the other two temperatures.
The formulation in accordance with the '791 Camp-
bell’s patent is changing much more and shows that the
browning reactants are not reactively immobilized.

Embodiments of this invention can provide the ad-
vantage of control of color development in a browning
system prior to microwave heating, thereby allowing
distribution of the treated food products at standard
food distribution temperatures, particularly frozen and
refrigerated. Embodiments of this invention can also
provide for quantitative contro! of the browning reac-
tion to allow the end point of browning and textural
development of the food product to coincide. Embodi-
ments of the invention also allow for the predictability
of the development of a coloring effect, and for means
of displaying predicted colors using computer technol-
ogy and color science.

SEE LAB

SeeLab is an interactive computer color display sys-
tem which allows an operator to invoke:

1. A Triplet Patch Browser which allows one to view
colors and colorimetric coordinates within a measured
space.

2. A Gauged Browser which allows one to view
predicted food product color by selecting and setting
browning ingredient variables for a desired product

20

35

40

45

50

system; based on linear regression of experimental color -

measurements on actual product.

3. An N by N Color Patch Browser which allows one
to view an N by N grid of predicted product color
patches generated by: a) selecting a product system; and
b) fixing all but two browning system ingredient vari-
ables, allowing the remaining two variables to vary
over their respective ranges; based on linear regression
of experimental color measurements on actual product.

1. The Triplet Patch Browser

The triplet patch browser consists of two main areas:
the gauge panel on the left and the color patch on the

60

65

32
right. The gauge panel consists of three labeled gauges,
each with a label, digital, and analog section. The color
patch panel consists of a surround region and a central
color display rectangle.

By changing the values of the gauges (e.g., L a; and
by values), the displayed color patch is recomputed and
displayed. The gauged values can be changed by “drag-
ging” the analog bar which results in a corresponding
change in the digital readout or by using the popup
menu in the digital gauge to type in a value. Dragging
of an analog gauge is accomplished by placing the cur-
sor in the analog display rectangle, pressing the mouse
button and moving the cursor.

An example of the triplet patch browser is shown in
FiG. 21.

2. The Gauged Browser

The gauged patch browser consists of two main ar-
eas: the gauge panel on the top and the color patch
panel on the bottom. The gauge panel consists of la-
beled gauges, one for each independent browning sys-
tem variable in the regression on the experimental data,
each with a label, digital, and analog section. The color
patch panel consists of a surround region and a central
color display rectangle.

By changing the values of the gauges (e.g., micro-
wave time, sugar to protein ratio, soy protein to albu-
min ratio, glucose to xylose ratio, and % soda), the
displayed color patch is recomputed and displayed.
Dragging of an analog gauge is accomplished by plac-
ing the cursor in the analog display rectangle, pressing
the mouse button and moving the cursor.

An example of the gauge browser on regression is
shown in FIG. 22.

3. The N by N Color Patch Browser

The N by N color patch browser consists of a single
labeled grid of colored rectangles. The number of hori-
zontal and vertical divisions are the same and deter-
mined at invocation time. The horizontal and vertical
independent browning system variables are labeled at
the bottom and left edges of the grid while the fixed
variables and their values are indicated on the top edge
of the grid.

By selecting various values for the nondisplayed in-
dependent browning system variables, a plane in n-
dimensional space is selected for display. After identify-
ing a color region or browning system of interest, a
color contour of that system or region can readily be
generated using this browser.

An example of the N by N color patch browser on
regression is shown in FIG. 23.

Changes may be made in the components and assem-
blies described herein or in the steps or the sequence of
steps of the method described herein without departing
from the concept and scope of the invention as defined
in the following claims.

SeeLab Assembly Notes

This section describes the steps required to assemble
the SeeLab system on top of a commercially available
release of Smalltalk-80. SeeLab is assembled on top of
this release of Smalltalk-80:

*“Smalltalk-80 Programming System Version VI 2.2

Macintosh II Oct. 15, 1987, ParcPlace Systems, Palo

Alto, Calif.”.

Using the ‘do it’ operation on the commands in dou-
ble quotes below, load the additional components of the
system in. Note that these fileIn operations are order
sensitive and will not operate properly if the order is

5,073,392

33

changed. They assume that the Pluggable Gauges T™

resides on directory “PG FILES v 1.1” and that the

SeeLab files reside on directory *“SeeLabBuild”.

1. Execute to enlarge display space for Spectrum dis-
play: *(DisplayScreen displayExtend: 1024@768.
“H-P 9000™)”

2. To install Pluggable Gauges: 37 (FileStream old-
fileNames: ‘PG FILES v 1.1:Pluggable Gauges
V1.1.st’) fileIn.” .

3. To fileIn the data types for SeeLab execute: “(FileS-
tream oldfileNames: ‘SeeLab.Build:SeeLab Data.st’)
fileIn.”

4. Filing in the ExcelTextStream class: “'(FileStream
oldFileNames: ‘SeeLab.Build:ExcelTextStream.st’)
fileln.”

5. Filing in the needed ColorFormView: (FileStream
oldFileNamed: ‘SeeLab.Build:ColorFormView.st")
fileIn.”

6. Now we’ll go for the ColorFormView: st file “(FileS-
tream oldFileNamed: ‘SeLab.Build:ColorInter-
face.st’) fileIn.”

7. Filing in the color spaces now: “(Filestream oldFile-
Named: ‘Seelab.Build:Color Spaces.st’) fileIn.”

8. Now, file in the triplet browser: “(FileStream old-
FileNamed: ‘SeeLab.Build:SLColorTripletBrow-
ser.st’) fileIn.”

9. Now the tools: “(FileStream oldFileNamed: ‘See-
Lab.Build:Color Science Tools.st’) fileln.”

Examples of the Use of SeeLab

Below are examples of the use of the tools in SeeLab.
Selection and the ‘doit’ operation are part of the Small-
talk-80 environment. See Documentation for descrip-
tive details.

1. To install experimental description as global vari-
able EP120 select the text between quotes and ‘doit’:

15

34
“EP120 _(SLCExperiment fromUserExcelTextFile:
‘Paul”s Reality:EP120.ex.txt’).”
The required format of the Excel Text File to build
an experiment can be found in the method ‘fromUse-
5 rExcelTextFile’. Note that this is not the only accept-
able way to deal with SLCExperiment creation. See
that class’s methods and comments for details. Also
notice that creation of a Global variable in the system is
also not required to use the tools. It does, however,

10make garbage collection for the system easier.

2. To open a Triplet Patch Browser on a Hunter Lab
color triplet, select the text between quotes and ‘doit’:
“SLCTripletPatchBrowser openNewOn: (SLLabHun-
terColor new).”

3. To open a Gauged Browser on the global experi-
mental description created in 1., select the text between
quotes and ‘doit’: “SLCGaugedPatch openOn: EP120.”
‘EP120’ in this and 4. below only needs to evaluate as a
instance of class SLCExperiment and may be expressed

20 as another message or object reference.

4. To open a N by N Color Patch Browser on the
global experimental description created in 1., select the
text between quotes and ‘doit’. “SLCNByNBrowser
startupOn: EP120”.

25

LISTINGS OF SEE LAB FILE IN FILES

The information in the following listings is copy-
righted by The Pillsbury Company. ©)1989, The Pills-

30 bury Company (17 U.S.C. 401).

Note: Due to discrepancies in the glyphs assocxated
with the ASCII character 95 decimal, the Smalltalk
character represented by an arrow directed towards the
left appears as ‘_" in the listings. Also, ASCII character

35 94 decimal, the Smalltalk character represented by an

arrow directed upwards appears as *~’

Below is the listing for file 'Seelab Data.st' in standarzd

fileIn/fileOut format:

Object subclass: #SLObject
instanceVariablieNames: '’
classVariableNames: ''
poolDicticnaries: '!

category: 'Seelab Da:if!

'SLObject methodsFor:

‘functions'!

penAngleFzom:fizrstPoint to: lastPoint

| offset x y deg |

“return the angle cf the vector in Pen degrees

offset _ lastPoint - firstPoint.

(0 = nozzh)"

5,073,392
35 36

x _ offset x .
y _ offset vy.
x = 0 ifT7zue:{ x _ 0.0001]7.

deg (y / x) arcTan radiansToDegrees.

x positive & y positive ifTrue:{ deg 50 + deg].

x positive & y negative ifTrue:(deg _ 50 + degl.
x negative & y positive ifTzue:(deg _ 270 + deg].

x negative & y negative ifTrue:(deg _ 270 + deg].
~deg!

rotate: thisPeint by: anAngle around: aPoint

| point x y xn yn theta |

"rotate thisPoint by anAngle arzound aPoint”
theta _ (0-anAngle) degreesToRadians.

"homogenize point”

point __ thisPoint - aPoint.

"rstate point”
x _ point x.
y _ point y.
Xn _ x * theta cos - (y * theta sinj.
yn _ x * theta sin + (y * thera cos).

peint _ xn @ yn.

*un-homogenize point”

point _ point _ aPeoint.

“peint! !

'SLObject methodsFor: ‘notifying'!

inform: aString
"display aString inside a bordered box on the screen unzil
the user presses the mouse inside the box"
"SLObject new inform:

'‘Now is the time fc:- all good men

2o come to the aid of their country''s

5,073,392
37 38

deficit by sending in 1/2 of their

yearly earnings!!'"

| viewCenter continue continueBex continueformBox continuefcrm
text textBox formBeox screenBox screenUnderFormBox form cPoint targez3cx
point delta |

"THE FOLLOWING CODE WILL PLACE THE INFORMATION VIEW IN THE CENTER CF THE
CURRENT STANDARDSYSTEMVIEW"
"viewCenter _ ScheduledControllers aACIivaCORiiidads Hidd

insetDisplayBox center.”

“THIS CODE WILL CENTER THE VIEW AROUND THE CURRENT MOUSE LCCATIZIN"

.viewCenter _ Sensor curscrPoint.

continue _ 'click here to continue' asDisplayTex:.

continueBox _ continue boundingBox.

centinueFormBox _ Rectangle origin: 0 @ 0 extent: ccntinueBex
extent + (4 8 4).

continueForm _ Form extent: continueFormBox extent.

continueForm borderwidth: 2.

cecntinue displayOn: cohtinuerorm at: continueformBox center -
continueBox center. a

text _ aString asDisplayText.

textBcx _ text boundingBox.

formBox _ Rectangle origin: 0 @ (0 extent: (textBox extent x + £

max: continueFormBox extent x) @ (S0 + textBox extent y).

formBox _ formBox align: ZormBox center with: viewCenter.
delta _ formBox amountToTranslateWithin: Display boundingBex.

formBox moveBy: delta.

screenBox _ formBox.

screenUndezFormBox _ Form fromDisplay: screenBox.

form _ Form extent: formBox extent.

form berderMidth: 3.

text displayOn: form at: formBox extent //2 - =extBox -enmzar - ..
@ 10).

continueForm displayOn: form at: (cPoint _ formBox extens x //2 -

continueFormBox center x @ (form boundingBox bottomCenter y - 32)).

5,073,392
39 40

targetBox _ continueFormBox translateBy: cPoint + screenBox
origin.
form displayAt: screenBox origin.
Sensor cursorPeint: screenBox center.
10 timesRepeat: [Dispidy DowsTee: -eTTWENSOX] .
Cuzrscr normal showWhile: [
(peint _ Sensor cursorPoint.
(screenBox containsPoint: point)
ifFalse: [Display reverse: screenBox, reverse:
screenBox].
‘ (cargetBox containsPoint: point)
& Sensor anyButtonPressed] whileFalse].
Display reverse: targetBox.
Sensor waitNoButton.
49 timesRepeat: [Display reverse: targetBox].

screenUnderFormBox displayAt: screenBox origin! !

Mee me om == ce o w- o- e om m- m- o= em me cm = == !

SLObject class

instancevVariableNames: '‘'!

'SLCbject class methodsFor: 'notifying'!

inform: aString
the user presses the mouse inside the box"
"SLObject inform:

‘Now is the time for all good men

to come to the aid of their country''s

deficit by sending in 1/2 of their

yearly earnings!!'”
| viewCenter continue continueBox continuefFormBox continuerasrn

text textBox formBox screenBox screenUnderFormBox form cPoint zargezicsx

point delta |

CURRENT ST -

5,073,392
41 42

"viewCenter _ ScheduledConzrollers activeContzoller view

insetDisplayBox center.®

“THIS ZCDE WILL CENTER THE VIEW ARCUND THE CURRENT MCUSE LCCATICON"

viewCenter _ Sensor cursorPoint.

continue _ 'click here to continue' asDisplayTex:.

continueBex _ continue boundingBox.

centinueFormBox _ Rectangle origin: 0 @ 0 extent: continuedox
extent + (4 @ 4).

continueForm _ Form extent: ceontinueFormBeox extent.

continueForm bordezWwidth: 2.

continue displayOn: continueForm at: continueformBox center -
continueBox center.

text _ aString asDisplayText.

textBox _ text boundingBox.

formBox _ Rectangle origin: 0 ¢ O extent: (textBox extent x <« £

max: continueFormBox extent x) @ (S0 + textBox extent y).

formBox _ formBox align: formBox center with: viewCenter.
delta _ formBox amcuntToTranslatewithin: Display boundingsex.

formBox moveBy: delta.

screenBox _ formBox.

screenUnderFormBox _ Form fromDisplay: screenBox.

form _ Form extent: formBox extent.

form borderWideth: 3.

text displayon: form at: formBox extent //2 - textBox center - (2
g 10.

continueForm displayOn: form at: (cPeint _ formBox extent x //2 -
continueFormBox center x & (form boundingBox bottomCenter y - 30)).

targetBox _ con:inuchrmBoxbtzansla:esy: cPoint + screenBox
origin. A

form displayAt: screenBox origin.

Sensor cursorPoint: screenBox center.

10 timeasRepeat: ([Display reverse: screenBox].

Cursor normal showWhile: [

{point _ Sensor cursorPoint.

1screenBox containsPoint: point)

5,073,392
43 44

iffalse: {Display reverse: screenBox: reverse:
screenBox] . '
{targetBox containsPoint: point)
& Sensor anyButtonPressed] whileFalse]}.
Display reverse: targetBox.
Senscr waitNoButton.
49 timesRepeat: [Display reverse: targetBox).

screenUnderFormBox displayAt: screenBox origin! !
'SLObject class methodsFor: ‘functions'!

penAnglefrom: firstPoint to: lastPoint
| offsert x y deg |

"retirn the angle of the vector in Pen degrees ({ = nczzih) "
offset _ lastPoint ~ firstPoint.

x _ offset x .

y _ offset y.

x = Q ifTrue:[x _ 0.0001].

deg _ (y / x) arcTan radiansToDegrees.

x positive & y positive ifTrue:(deg _ 90 + deg].
x positive & y negative ifTrue:(deg _ 30 + deg).
x negative & y positive ifTrue:[deg _ 270 + deg].
x negative & y nagative ifTrue:(deg _ 270 + deg).

~deg!

rotate: thisPeint by: anAngle arcuad: -ePoive

| point x y xn yn theta |

"rotate thisPoeint by anAngle arcund aPoint®
theta _ (O-anAngle) degreesTcRadians.

"homogenize point”

point _ thisPoint =- aPeint.

"rotate point”
X _ point x.
y _ point y.

Xxn _ X * theta cos - (y * theta sin).

5,073,392
45 46

yn _ x * theta sin + (y * theta cos).

peint _ xn @ yn.

"un-homogenize poing”

point _ peint _ aPoint.

“point! !

SiLCbiect subclass: #SLCRegression
instancevVariableNames: 'coefficients baseValue mixedEffects
fsundationMazrix valueMatrix variableDefinitions '
classVariableNames: '’
poollictionaries: '

category: 'Seelab Data'!

'SLCRegression methodsFor: 'building'!

coefficientsFromExcelText: aTextStream

"builds the crdered collection of the coefficients of the
experiment from

aTextStream that has already been opened and digrested for ics

trajectory.

This expects (n*n + 3*n + 2)/2 coefficients of £fiz for each :

colcr values.”

| n expectedNumber actualNumber thisCo |
n _ self variableDefinitions size.
-expecqedNumbo: _{((mn*n)+ (3 *n) +2) /2.
self coefficients: (OrderedCollection new: 3).
1 to: 3 do: [:4i | coefficients add: (OrzderedCcllecztisn rew:
expectedNumber)).
actuailNumber _ 0.

{thisCeo — aTextStream nextStream contents asString.
{(thisCo sameAs: '...")
| aTextStresam atEnd)
whileFalse:
{actualNumber _ actualNumber + 1.
(coefficients at: 1)
add: thiato .

(coefficients at: 2)

5,073,392
47 48

add: aTextStream nextNumber.
(cocefficients az: 3)
add: aTextStream nextNumbter.
aTextStream getToEndOfRow] .
actualNumber = expectecNumber ifFalse: [self error: 'Cceffizient

csunt erzaz!llitrryr !

!SLCRegression mathodsFor: 'accessing'!

basevValue
"return the value of baseValue.
For a description of this instance variable, see the comment

in the accessing method 'basevValue:'."

~“baseValue!

baseValue: aParameter
"set the value of baseValue.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>.”

baseValue _ aParameter!

coefficients
"return the value of coefficients.
For a description of this instance variable, see the ccomment

in the accessing method ‘'coefficients:'."”

~coefficients!

coefficients: aParameter
"set the value of coefficients.
aParameter is expected to be of the class aClass.

Zaia {sateres vETiXle 1s used to <explanation>."
coefficients _ aParameter!

fsuncationMatrix
"return the value of foundationMatrix.
For a description of this instance variable, see zhe zcrmen:

in the accessing method 'foundationMatrix:*'."

5,073,392
49 50

~fsundationMatrix!

fsundationMatrix: aParameter
"set the value of foundationMatrix.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

foundationMatrix _ aParameter!

mixedEffects
"return the value of mixedEffects.
For a description ¢f this instance variable, see zthe zcmmenc

in the accessing method 'mixedEffects:'."

“mixedEffects!

mixedEf{fects: aParameter
"set the value of mixedEffects.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

mixedEffects _ aParameter!

valueMatzrix
"return the value of valueMatrix.
For a description of this instance variable, see zhe ccmmen:
in tha Acosssiag wwptryd “wyiudMatrix:'."

~valueMatzix!

valueMatrix: aParameter
"set the value of valueMatrix.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

valueMatrix _ aParameter!

variableDefinitions
"return the value of variableDefinitiocns.
For a descripticn of this instance variable, see the comment

in the accessing method 'variableDefinitions:'."

5,073,392
51 52

“variableDefinitions:!

variableDefinitions: aParameter
"set the value of variableDefinitions.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanaticn>."

variablePefinitions _ aParameter! !
SLObject subclass: #SLTrajectory

instanceVariableNames: 'colorSamples variableDefinitisns name
description colorSpace !

classVariableNames: ''

poolDictionaries: '!

category: 'Seelab Data‘'!

!SLTrajectory meathodsFor: ‘building'!

buildAnExtendedTrajectoryFzrom: anExcelTextStream
"builds a trajectory from a ExcelTextStream passed as a paramescerz"
"The receiver of this message is an instance of SLTrajeczozy"

"Setup 2 reference to the TextStream and set it tc the beginning”

{ ts bldspace ivLast tripletClass thislIV newSample varTable
newColor r |

ts _ anExcelTextStream.

ts reset.

self setNameFrom: ts.

self setDescriptionfrom: ts.

self setColorSpacefrom: ts.

r _ self buildExtendedvariableDefinitionsFrom: ts.

iviast _ r at: 1.

varTable _ r at: 2.

"Now we plug in the samples."

"riqure out what class the Triplets should belong =2."

tripletClass _ SLGolorTriplet allSubclasses detect: (:each ! each
new colorSpace = self colorSpace]

ifNone:
{self inform: 'What in the world are vcu

trying to do.....

5,073,392
53 54
immgine, - <R -} TYITUT Spacte that dcesn''t exist.

Where do you think we are anyway, Melmac???'.

~nil].

{thisIV _ ts nextStream contents asString.
(thislV sameAs: '...')
! ts atEnd]
whileFalse:
(newSample _ SLColcrSample new.
newSample trajectory: self.
"put in the independent variable values”
1l to: ivlast do:
(:n }
newSample addvVariable: ((varTable at: n)
at: 1)
value: thisIV asNumber.
thislV _ ts nextStream contents asString).
newColor _ tripletClass new.
newColor valuel: :higIv asNumber.
newColor value2: ts nextNumber.
newColor value3: ts nextNumber.
newSample colox: newColor.
self addSample: newSample.
ts getToEndOfRow).
"Get top the end of the row if this isn't the end of £ile z: ge=
ready for
coefficient building"
ts atEnd ifFalse: (ts getToEndOfRow]!

buildAOlcdTradectoryFrom: anExcelTextStream

"builds a trajectory from a ExcelTextStream passed as a pararezec:z"

| ts bldspace varTable temp varElemant n ivlast varDef
tripletClass newSample newColor thislv |

ts _ anExcelTextStream.

ts reset.

o8 *WECeTTASStringOfMax: 78S,

self name: ts currentObject.

ts getToEndOfRow.

"Don't care about the rest of the row."

5,073,392
55 . 56
ts acquireMultilineText.

"Reads until three dots. 1lst column only."

" Positions at last column of last zow."

self description: ts currentObject.

"Now get the color space”

ts nextCellAsStringOfMax: 20.

bldspace _ ts currentObject asSymbol.

"first, figure cut which color triplet class corrzesponds o my
coleor space”

SLColorTriplet allSubclasses detect: [:each | each new cclorScace
= bldspace]

ifNone:
(self inform: 'What in the world are you trying =2

imagine, sending me a color space that does not exist.
Where do you think we are anyway, Melmac???'.
~nil].

self colorSpace: bldspace.

ts getTeoEndOfRow.

"First set of columns are the names of the IVs until ‘colzcco!
cccurs”

"Buzz down through rows with column 1 as blank."

varTable _ OrderedCollection new.

(temp _ ts nextCellAsStringOfMax: 35.
temp = ']
whileTrue: (ts getToEndOfRow].
(cerp samaAs: 'color!)
ifTrve: [self error: 'A trajectory Must have at least one
Independent Variable!!!!']. .
- _1.
"build the table with only the namas"
{temp sameAs: ‘'color']
whileFalse:.
A {varElemeant _ OrderedCollection new: 3.
varElement add: temp.
varTable add: varElement.
temp _ ts nextCellAsStringOfMax: 35.
n_n+1}.

ts getToEndOfRow.

5,073,392
57 58

iviast _n - 1.
"Now add the units"
ts getToEndOfRow.
temp _ ts nextCellAsStringOfMax: 35.
1l to: ivlast do:
[:n |
varElement _ varTable at: n.
varElement add: temp.
varTable at: n put: vazElement.
temp _ ts nextCellAsStringOfMax: 35.
n_n+1].
ts getToEndOfRow.
temp _ Compiler evaluate: (ts nextCellAsStringOfMax: 35).
"Now use the default values to set up the variable definizicns <a-
the trajectery.”
1 to: ivlast do:
{:n |
varElement _ vazTable at: n.
varDef _ SLVariableDefinition
name: (varElement at: 1)
units: (varElement at: 2)
defauitValue: temp.
self addVariableDefinition: varDef.
temp _ Compiler evaluate: (ts nextCellAsStringOfMax: 23).
n_n+1],
ts getToEndOfRow.
"Now we plug in the samples.”
"Figure out what class the Triplets should telong %o0."
:?ipla:Class _ SLColorTriplet allSubclasses detecz: ‘:each '@ each
new colorSpace = self colerSpace] '
ifNone:
(self inform: 'What in the werld are yeu
tzying to do.....
imagine, sending me a color space tha:(donsn": exist.
Where do you think we are anyway, Melmacz2??'.
“nil).

(thisIV _ ts nextStream contents asString.
(thislV sameAs: '...')

| ts atEnd)

5,073,392
59 60

whileFalse:
[(newSample _ SLColorSample new.
newSample trajectory: self.
"put in the independent variable values”
1 to: ivLast do:
{:n |
newSarple addvariable: ((varTable az: o)
at: 1)
value: thislV asNumber.
thislIV _ ts nextStream contents asString).
newColor _ tripletClass new.
newColor valuel: thisIV asNumber.
newColor value2: ts nextNumber.
- newColor valueld: ts nextNumber.
newSample color: newColor.
self addSample: newSample.
ts getTCEndOfRow] !

buildARevisedOldTrajectoryFfrom: anExcelTextStream

"builds a trajectory from a ExcelTextStream passed as a paramezec”

| ts bldspace varTable temp varElement n ivlast varDef
tripletClass newSample nowCo;o: thislVv ¢ |

ts _ anExcelTextStream.

ts reset.

self setNameFrom: ts.

self setDescriptionfrom: ts.

self setColorSpaceFrom: ts.

r _ self buildVariableDefinitionsFrom: ts.

ivLast _ r at: 1.

varTable _ r at: 2.

"Now we plug in the samples.”
*Figure out what class the Ttiélo:s should belong to.”
tripletClass _ SLColorTriplet allSubclasses detect: [(:each | each
new colorSpace = self colorSpace]
ifNone:
{self inform: 'What in the worlid are ycu
trying to do.....
imagine, sending mea a color space that doesn''t exist,
Where do you think we are anyway, Melmac?2?'.
*nil].

5,073,392
61 62

(thisIV _ ts nextStream contents asString.
(thislV sameAs: '...")
| ts atEnd]
whileFalse:
(newSample _ SLColorSample new.
newSample trajectory: self.
“put in the independent variable values"
1 to: iviast do:
[:n |
newSample addVariable: ((varTable at: n)
at: 1)
value: thislV asNumber.

thislV _ ts nextStream contents asSzcing].
newColer _ tripletClass new.

newColor valuel: thislV asNumber.
newColor valuel: ts nextNumber.
newColor valueld: ts nextNumber.
newSample color: newColor.

self addSample: newSample.

ts getToEndOfRow]!

SuildATrajectoryFrom: antxcelTextStream
i ts bldspace ivLast triplecClass thisIV newSample varTable
newColor |

"builds a trajectory from a ExcelTextStream passed as a parameter"

ts _ anExcelTextStream,

ts reset.

ts nextCellAsStringOfMax: 75.

self name: ts currentObject.

ts getToEndOfRow.

"Don't care about the rest of the row."

ts acquireMultilineText.

"Reads until three dots. 1lst column only."
" Positions at last column of last row."
self descriptiocn: ts currentObject.

"Now get the color space”

ts nextCellAsStringOfMax: 20.

bldspace _ ts currentCbiect asSymbol.

5,073,392
63 64

"first, fiqure ocut which color triplet class corrzesponds =: =y
" celor space”

SLColorTriplet allSubclasses detect: (:each | each new colsrSgace
= bldspace]

ifNeone:
{self inform: 'What in the world are you =zrying ==
do.....
imagine, sending me a color space that does not exist.
Where dc you think we are anyway, Melmac???'.
“nil).

self colorSpace: bldspace.

ts getToEndOfRow.

"B8yild the variable definitions from the stream. This mesncd
returns the number of independent varisbles found in the textstrzgam.”

ivlast _ self buildVariableDefinitionsFrom: :s.

"Now we plug in the samples.”

"Figure out what class the Triplets should belong tz."

tripletClass _ SLColeorTriplet allSubclasses detect: [:each eacn
new colorSpace = self cclorSpace)

ifNone:
(self inform: 'What in the world are you
trying to do.....
imagine, sending me a color space that doesn''t exist.
Where do you think we are anyway, Melmac???'.
~nil}.

(thisIV _ ts nextStream contents assString.
thisIV sameAs: '...')
| ts atEnd]
whileFalse:
{newSample _ SLColorSample new.
newSample trajectory: self.
“"put in the indoﬁundont variable values®
1 to: ivlast do:
{:n |
newSample addVariable: ((varTable at: 1)
- at: 1)
value: thisIlV asNumber.
thisIV _ ts nextStream contents assStzing..

newColor _ tripletClass new.

5,073,392
65 66
newColor valuel: thisIV asNumber.

newColer valuel: ts nextNumber.
newColor valusd: L8 AsEtlumiseT .

newSample color: newColor.
self addsSample: newSample.

ts getToEndOfRow]!
buildExtencdedVariableDefinitionsFrom: aTextStream

ccsurs”

"varTable is an OrderedCcllection of the IV names £cr later use"
"Buzz down through rows with column 1 as blank."

| temp n varElement ivlast varDef varTable retucz-ned !
varTable _ OrderedCcllection new.
{temp _ aTextStream nextCellAsStringOfMax: 35.
temp = '']
whileTrue: (aTextStream getTocEndOfRow].
(cemp sameAs: ‘coler') _
ifTrue: (self error: 'A trajectory Must have at leas: cre
Independent Variable!!'].
n _ 1.
"build the table with only the namas”
{temp sameAs: 'colozr')
whileFalse:
{(varElement _ OrderedCollection new: 6.
varElement add: temp. ’
varTable add: varElement.
temp _ aTextStream nextCollAsStringOfMéx: 35.
n_n+1].
aTextStreanm getToEndOfRow.
iviast _n - 1.
"Now add the units"
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 38§.
1l to: ivliast do:
l:a i

varElement _ varTable at: n.

5,073,392
67 68

vazElement add: temp}
varTable at: n put: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.

a_n+1].

"Now add the default”

aTextStream getToEndCOfRow,

cemp _ aTextStream nextCellAsStringOfMax: 35.

1 to:

ivlast do:

(:n |

varflement _ varTable at: n.

varElement add: temp.

varTable at: n put: vazElement.

temp _ aTextStream nextCellAsStringOfMax: 35.

n_n+1l}.

"Now add the centez"

aTexzStrzeam gerToEndOfRow.

temp _ aTextStream nextCellAsStringOfMax: 35.

1 to:

ivLast do:

[:n |

varElement _ varTable at: n.

varElement add: temp.

varTable at: n put: varElement.

temp __ aTextStream nextCellAsStringOfMax: 35.

n_n-+l].

"Now add the range”

aTextStream getToEndOfRow.

temp
1l to:

"Now

_ aTextStream nextCellAsStringOfMax: 3S.

ivLast deo:

{:n |

varElement _ varTable at: n,

varElement acdd: temp.

varTable at: n put: varElement.

temp _ aTextStream nextCellAsStringOftMax: 35.
- _"Tn o+
add the min”

aTextStream getToEndCfRow.

temp _ aTextStream nextCellAsStringOfMax: 35.
1 to: ivlast do:

{(:n |

5,073,392
69 70

varElement _ varTable at: n,
varElement add: temp.
varTable at: n put: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1],
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
"Now use the max values to set up the variable definitions for =he
trajectory.”
1 to: ivlast do:
(:n !
varElement _ varTable at: n,
varDef _ SLCExtendedVariableDefinition
name: (varElement at: 1)
units: (varElement at: 2)
defaultValue: (varElement az: 3)
center: (varElement at: 4)
range: (varElement at: 35)
min: (varElement at: 6)
max: temp.
self addVariableDefinition: varDaf.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1]j.
aTextStream getToEndOfRow.
returned _ OrderedCollection new: 2.
returned add: ivlast.
returned add: varTable.

“returned!

buildvVariableDefinitionsFzrom: aTextStream

"First set of columns are the names of the IVs until '=zalar!
occurs”

"3uzz down through rows with column 1 as blank."

| varTable temp n varElement ivlast varDef returned |

varTable _ OrderedCollection new.

(temp _ aTextStream nextCellAsStringOfMax: 35.
temp = '')

whileTrue: [aTextStream getToEndOfRow].

5,073,392
71 72

(temp sameAs: 'coloz')
ifTrue: [self erzrcr: 'A trajectory Must have at least cne
Independent Variable!!').
n_1.
"build the table with only the names”
[temp sameAs: 'color'}
whileFalse:
[varElement _ Ozdo:edcélloction new: 3.
varElement add: temp.
varTable add: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1].
-aTextStream getToEndOfRow.
ivlast _n - 1.
"Now add the uniaTextStream"
aTextStzeam getToEndOfRow,
temp _ aTextStream nextCellAsStringOfMax: 35,
1 to: ivlast do:
{:n |
varElement _ varTable at: n.
varClement add: temp.
varTable at: n put: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+l1].
aTextStream getToEndOfRow.
temp _ Compiler evaluaze: (aTextStiream nextlellAsStzingliMax:
"Now use the default values TC sSet up the varianle Zdefinmizians
the =“rajectory."” ’
1 %o ivlast de:
fin |
varElement _ varTable at: n.
vazDef _ SlVariableDefiniticn
name: (varElement at: 1)
units: (varElement at: 2)
» defaultValue: temp.
self addvVariableDefinition: varDef.
temp _ Compiler evaluate: (aTextStream
nextCellAssStringOfMax: 35).
n_n+ 1},

aTextStream getToEndOfRow.

(3]
"

5,073,392
73 74

returned _ OrderedCollecticn new.
returned add: ivlast.
rezurned add: varTable.

“returned!

setColozSpaceFrom: anExcelTextStream
| ts bldspace |

"Get the color space, verify that it's valid and sez i- := ==a

Trajectory™
ts _ anExcelTextStream.
ts nextCellAsStringCfMax: 20.
bldspace _ ts currentObject asSymbol,
SlColorTriplet allSubclasses detect: [:each ! each rew cclzroizacs
= bldspace]
ifNecne:
[self inform: 'Color space dcoes not exiss'.
“nil].
self colorSpace: bldspace.
OB GETITVENECT ROV,
“bldspace!
setdescriptionFrom: anExcelTextStream

"Read and inser: the descripticn from multiple Linmes 0f zax: on

-

-l cmme A"
"Reads until three dects. 1ist coclumn only. Positions as lass

solumn of last zow."

I <8 |

ts _ anExcelTextStream.

ts acquireMultilineText.

self description: ts currentObject.

~description!

setNameFrom: anExcelTextStream

"Read and insert the name of the Trajectory from column A and skip
to the end

of the row."

I ts |
ts _ anExcelTextStream.

s nextCellAsStringOfMax: 75.

5,073,392
75 76

self name: ts currentObject.
ts getToEndCLfRow.

“self name! !
!SLTrajectory methodsFor: ‘accessing'!

colorSamples
"return the valus of colorSamples.
For a description of this instance variable, see the cémme::
in the accessing method 'colorSamples:'."

colorSamples isNil ifTrue: [self cclorSamples: OrderedCzllecz:o:n
new). -

“celorSamples!
gclozSamples: anOrderedCollection

"set the value of colcrSamples.

anCrleredCollectizn is expected to be of the class
CrderedCollectioan.

This instance variable is used to hold a colleczion £ inszanzes

2f silolorSample.”
sclczSamples _ anCrderedCollection!

colorSpace
“zreturn the value of colorSpace.
For a description of this instance variable, see the z:zmment
in the accessing methed 'colorSpace:'."

zclorSpace isNil ifTrue:{self colcrSpace:#labHunter].

~zolerSpace!

colorSpace: aSymbol

"set the value of colorSpace.

asSymbol is expected to be of the class Symbol.

This instance variable is used to hold a symbol thaz Zenozes :ne
coler space used in this trajectory. All color samples zaken .o z=:is

expeariment should be recorded as LabColerSamples.”
colorSpace _ aSymbol!

description

5,073,392
77 78

"return the value of description.
For a description of this instance variable, see the ccmment
in the accessing method 'description:'."

description isNil ifTrue:{self description: 'not defined verz'!.

“description!

description: aString
"set the value of description.

astring is expected to be of the class String.

'
"
o
]
n

This instance variable is used to the verbose descrizticn ¢

traieczory.”

description _ asString!

"return the value of name.
For a description of this instance variable, see the comment
in the accessing method ‘name:'."

name isNil ifTrue:(self name: 'not defined vet'].

“name!

name: aString
"set the value of name.
astring is expected tc be of the class String.
This instance variable is used to hold the name of this

trajectory.”
name _ aString!

variableDefinitions

"return the value of variableDefinitions.

For a description of this instance variable, see the zcmmen-

in the accessing method 'vaziiblobetinitions:'."
variableDefinitions isNil 1fTrue:([self variableDefinitions:
OrderedCollection new].

“variableDefinitions!

variableDefinitions: anOrderedCollection

"set the value of variableDefinitions.

5,073,392
79 80

anOzderedCollection is expected to be of the class
anOrderedCollection.
This <4emngrey vITiIDile is used to hold a collection of inszances

of SLVariableDefinition."
variableDefinitions _ anOrderedCollection! !

'S.LTraseczsry methodsFor: 'color sample access'!

addCclorSampie
"sreate the preper color sample with the right independent
variables and add it

=2 my collectiocn of samples”

| colorSample |

:olorSahple _ self newColorSample.
self colorSamples add: colorSample.
colczSample trasjectery: self,

~celorSample!

addColecrSampleBefore: anSLColorSample
| colorSample |
"create the proper color sample with the right independent

variables and add it to my collection of samples”

colorSample _ self newColorSample.

self colorSamples add: colcrSample be:oto} ansSlCplorsample.
colorSample tradectory: self.
“colorSample!

addSample: aSample
| colerSample |
self colorSamples add: aSample.!

blankColorSample
] sziplerClews «=divFrriplet colozxSample |

"create the proper color sample with the right independen:z

variables and retuzn it”

5,073,392
81 82

cclzrSample _ SiColorSample new.

irst, figure out which color triplet class corresponds to my sclcs
space"

tripletClass _ SlColorTriplet allSubclasses detect:[:each! each new
coleozSpace = self colorSpace] ifNone:({self inform:

‘What in the world arze you trying to do.....

imagine, sending me a color space that doesn''t exist.

Where do you think we are anyway, Melmac???'. “nil]).
cclozTriplet _ tripletClass new.

colozrSample color: colorTriplet.

“colorSample!

newColorSample
"create the proper cclor sample with the right independent
variables and return

it "
| tripletClass colorTriplet colerSample |

colorSample _ SLColozSample new,
"first, figure out which color triplet class corresponds tos ny
color space"”
i:iplctClass _ SLColorTriplet allSubclasses detect: [:each | each
new colorSpace = self colorSpace)
ifNone:
(self inform: 'Color sample space does not
exist'.
~nil}.
coloerTriplet _ tripletClass new.
colorSample color: colerTriplet.
self variableDefinitions do:
{:varDef |
colorSample addVariable: varDef name.
colorSample atVariable: varDef name put: varDef

defaultvValue).

5,073,392
83 84

~colorSample!

removeColorSample: anSLColorSample

"remove this sample”
self colorSamples remove: anSLColorSample.
anSlColozSample trajectory: nil.! !
!SLTrajectory methodsfFor: 'IV value range access'!

maxMinQOfIV: aString

"cclorSamples is an OrderedCollection. Each sample holds a
Dicticnary=-class

instance variable holding the IV string name and the associated
value."

"This routine finds the min and max of a IV named aStzing and
returns them as

a point (min@max)."

| min max temp n |
min _ 9999999999999999999.
max _ 0 - min.
1 to: self colorSamples size do:
[:n }
:eﬁp _ (self colorsSamples at: n)
temp isNil
ifFalse:
[temp > max ifTrue: [max _ temp].
temp < min ifTrue: {min _ temp]
)
1!

t§LTrajectory methodsFor: 'variable definition access'!

addvVariableDefinition

"create a new var def and keep it..... if it does not conflict with
an existing var

def "

5,073,392
85 86

| vazDef |
varDef _ SLVariableDefinition fromUser.
self variableDefinitions detect: [(:each | each name = varDef rame]
ifNone:
{self variableDefinitions add: varDef.
~self].
self inform: ‘A variable definition named
't , varDef name , ‘'
already exists in this trajectory'.

“nil!

addVariableDefinition: anSlLVariableDefinition
"keep a2 new definition.....if it does not conflict with an

existing var def"

| vazDef |
self variableDefinitions detect: [:each | each name =
anSlvVariableDefinition name]
ifNone:
(self variableDefinitions add: anSlVariableDefinition,
‘aadll.
self inform: 'A variable definition named
*'f' , anSlLVariableDefiniticn name , ''’
already exists in this trajectory'.

“nil!

addvariableDefinitionFromUser
"create a new var def and keep it.....if it does nct con
an existing var

def "

| varDef |
varDef _ SLVariableDefinitioh fromUser.
self variableDefinitions detect: [:each | each name = varDef name)
ifNone:
(self variableDefinitions add: varDef.
~self].
self inform: 'A variable definition named

tt* , varDef name , ''!

5,073,392
87 88

already exists in this trajectory!.

“nil!

removeVariableDefinition: astring

"remove a var def named aString"

| vazDef |
varDef _ self variableDefinitions detect: {:each | each name =
astring]
ifNone:
{self inform: 'A variable definizion namea
''', aString , ''!
does not exist in this trajectory’'.
“nil].

self variableDefinitions remove: varDef!

unitsFor: asStzing

' varDef |
varDef _ self variableDefinitions detect: {:each | each name =
astringl.

~varDef units!

variapleDefinitionNamed: aStzing

"return a var def named aString"

~self variableDefinitions detect: (:each | each name = aStr-ing,
ifNone:
(self inform: 'A variable definition named
tv* , aString , '*"!
does not exist in this trajectory'.
“nilj! !

'SLTrajectory methodsFor: 'releasing‘!

release

"clean up"

5,073,392
89 90
self colorSamples do:{:each| self removeColorSample: each].

self colorSamples: nil.
suyper release! !
!SLTrajectory methodsFor: 'browsing'!

browse

"open a browser on me"

SLTrajectoryBrowser openOn: self! !

!SlIzajsctory methodafor: 'AAEple Sostiog''!
resortSamples

| varName sortedSamples |

"sort the samplés“
varName _ self variableDefinitions first name.

sortedSamples _ self colerSamples asSortedCollection:[:x yb (%

atVariable: varName) < (y atVariable: varName)].
self colorSamples: sortedSamples.

self changed:#order! !
!SLTrajectory methodsFor: 'xy plotting'!

xyPlotFromUser
“ask the user for each parameter and then create a data set and
open an

XYDataSetView on it"-

| string paraml param2 dataSet |

string _ FillInTheBlank request: ‘Enter a variable name or 1,2,cr
3 for the X axis:'.

(#('1' '2' '3') includes: string)
ifTrue: (paraml _ string asNumber]
ifFalse: [paraml _ string].

string _ FillInTheBlank request: 'Enter a variable name or :,2,or
3 for the Y axis:'.

(#('1* '2' *3') includes: string)

5,073,392
91 92

ifTrue: [param2 _ string asNumber]

ifFalse: ([param?2 _ string].
dataSet _ self createDataSetWithX: paraml andY: param2.
dataSet edit! !

!SLT:afectcry methodsFor: 'xy data set generation'!
createDataSetWithX: paraml andY: param2

"create and return a data set using the parameters paraml and
param2 on the

Tespective axes. If a param is a String, then it is a variable
name, if it is a

number, then it is 1-3 and refers to triplet values 1-3"

| queryl query2 dataSet x y |
(paraml isKindOf: String)
ifTrue: {queryl _ Array with: #atVariable: with: paraml]
ifFalse: [queryl _ Array with: ('value' , paraml
printString) asSymbol].
(param2 isKindOf: String)
ifTrue: [query2 _ Array with: #atVariable: with: param2)
ifFalse: [query2 _ Array with: ('value' , param?
printString) asSymbol]. '
dataSet _ XYDataSet new,
self colozrSamples do:
[:sample |
queryl size > 1

ifTrue: (x _ sample perform: queryl first with: gueryl

last)
ifFalse: (x _ sample color perform: queryl fircs:z).
query2 size > 1 '
ifTrue: [y _ sample perform: query2 first with: guery?
last]

iffalse: [y _ simple color perform: query2 first].
dataSet dataPoints add: x @ y].

“datasSet! !

Moo em ce oo oo wo o0 e o "e on ce "o e we e e m- L

SLTrajectory class

instancevVariableNames: ''!

5,073,392
93 94

'SLTrajectory class methodsFor: 'building'!

fromUserExcelTextFile
"read in a new an ExcelTextStream on a user-specified Excel tex: fils

and open a Trajectory browser on iz."

*The input format is:

--cell Al is text name of the trajectory

-=-cell A2 thru An is a text description of the
trajectory. It ends in three consecutive periods. Each line is a

maximum of 75 characters.

--cell An+l is the system that the colors were measured in.
first non-blank A cell after that is the name cof the first independent

variable,

--independent variable names continue in consecutive cells o the right
until the cell name ‘color' is encountered, indicating the column whecze
the first tristimulus readings are entered.

the next row under the IV names contain the units ¢of the IV's.

--no default values are used during build. £ an expected field is
blank, an error is generated and the build will not result in a

Trajectory. All cells, however are scanned.

--the next rows contain samples. Any cells not specified explici:zly
above or implied by the IV and tristimulus columns can be used as
desired. They will be ignored by the system.

The last row contains three periods in the first column."
| inName directory localName tzaj |

inName _ FillInTheBlank request:'File name, please.'.

directory _ FileDirectory directoryFromName: inName setFileNarme:
[:iccalNamex ! localName _ localNamex].

{(directory islegalFileName: localName)

super new.

5,073,392
95 96

traj buildaTrajecteoryFrom: (ExcelTextStream oldFileNamed: inName).

~crajl!

fromUserExcelTextFile: aFileName
"read in a new an ExcelTextStream on a user-specified Excel text Zile

and open a Trajectory browser on it."

"The input format is:

-=-cell Al is text name of the trajectory

~=-cell A2 thru An is a text description of the
trajectory. It ends in three consecutive periods. Each line is a

maximum of 75 characters.

-=cell An+l is the system that the colors were measured in.
fizst non-blank A cell after that is the name of the first independent

variable.

--independent variable names continue in consecutive cells to the rigat
until the cell name 'color' is encountered, indicating the column where
the first tristimulus readings are entered.

the next row under the IV names contain the units of the IV's,

--no default values are used during build. If an expected field is
blank, an error is generated and the build will not result in a

Trajectory. All cells, however are scanned.

-=-the next rows contain samples. Any cells not specified explicitly
above or implied by the IV and tristimulus columns can be used as
desirad. Ihay wild e ighosed oy ithe syscen.

The last zow contains three periods in the first column.”
i inName directory localName traj |

inName _ aFileName.
zirectory _ FileDirectory directoryFromName: inName sezfileName:
{:localNamex | localName _ localNamex].
(directory islegalFileName: localName)
ifTrue:

{ traj _ super new,

5,073,392
97 98

traj buildATrajectoryFrom: (ExcelTextStream oldFileNamed: inName).

~craj)!

cestFromUserExcelTextFile
"read in a new an ExcelTextStream on a user-specified Excel text Zile

and open a Trajectory browser on it."

"“The input format is:

-=-cell Al is text name of the trajectory

--cell A2 thru An is a text description of the
trajectory. It ends in three consecutive pericds. Each line is a

maximum of 75 characters.

-=-cell An+l is the system that the colors were measured in.
first non=-blank A cell after that is the name of the first independent

»

variable.

--independent variable names continue in consecutive cells to the right
until the cell name ‘color' is encounteraed, indicating the column where
the first tristimulus readings are entered.

the next row under the IV names contain the units of the IV's,

--no default values are used during build. If an expected fiéld Ls
blank, an error is generated and the build will not resul:t in a

Trajectory. Aall cells, however are scanned.

--zhe next zows contain samples. Any cells nct specified explicizly
above or implied by the IV and tristimulus columns can be used as

desired. They will be ignored by the system."
| inName directory localName traj |

inName _‘Paul''s Reality:Excel Coloer
Files:Panama/Fahrenholtz:PanamaTestOl'.
directory _ FileDirectory directoryFromName: inName setFileName:
[:localNamex | localName _ localNamex}.
{directory islegalFileName: localName)
ifTrue:

traj _ super new.

5,073,392
99 _ 100
raj buildARevisedCldTrajectoryFrom: (ExcelTextStream oldFileNamed:

inName) .

~crajlt? !

SLCbject subclass: #S5LColorSample
instanceVariableNames: 'color independentVariables trajeczazy
classVariableNames: ‘'
poolDictionaries: '

category: 'Seelab Data'!

!SiCclorSample methodsFor: 'accessing'!

color
"return the value of color.
For a description of this instance variable, see the ccmment

in the accessing method 'colorz:'."

color isNil ifTrue:{self color: SLLabHuntezrColor newj.

~coloz!

celozr: anSLColeorTriplet
"set the value of color.
anSLCclorTriplet is expected to be a subclass of anSLCclorTriplet.

This instance variable is used to hold the color observed for this

sample."®
coler _ anSlColorTriplet!

independentVariables

"return the value of independentVariables.

For a description ¢f this instance variable, see the comment

in the accessing methoed 'indepgndonﬁVaxiables:'."
independentVariables isNil ifTrue: [self independentVariables: Dictionary
newj}.

~“independentVariables!

independentVariables: aDicticnary

“set the value of independentVariables.

aDictionary is expected to be of the class Dictionary.

5,073,392
101 102
This instance variable is used to hold a dicticnary of
independentVariables connected with this sample. The keys of tihis

dictionary will be the names of the variables and the values will (ysu

guessed it!!), the values for the variables."
independentVariables _ aDictionary!

trajectory
"return the value of trajectory.
For a description of this instance variable, see the comment

in the accessing method 'trajectory:'."
~trajectory!

trajectory: anSLTrajectory
"set the value of trajectory.
anSlTrajectory is expected to be of the class SLTrajectory.
This instance variable is used to held thevtrajecnory thaz I am a

member of."
trajectory _ anSLTrajectory! !

'SLColorSample methodsFor: 'independent variable access'!

addvariable: aString

"add a new variable named aString to my dictionary of independent

 variables"

(self independentVariables includesKey: aString)
ifTrue: (self inform:
‘I already have an independent
variable named ''', aString,'''.'. “nil).
self indapandaniAsidbies 4i: ddtsiag pus:’'.!
addvVariable: aString value: aValue
"add a new variable named aString to my dictionary cf insfependen:

variables"”

{self independentVariables includesKey: aString)

ifTrue: (self inform:

5,073,392
103 104

‘> already have an independent
variable named ''', aString,'''.'. ~nil).

self independentVariables at: aString put: avValue.!

atVariable: aString

"return the vliaue of my variable named asString"”

(self independentVariables includesKey: aStzing)
ifFalse: (self inform:
“'I don''t have an independent

variable named ''', aString,'‘''.'. “~nil].
~self independentVariables at: aString!

atVariable: aString put: avalue

"change the value of my variable named aString to avValue"

(self independentVariables includesKey: aString)
ifralse: [self inform:
‘I don''t have an independent

variable named '‘'', aString,‘'''.'. “~nil}.
self independentVariables at: aString put:avValue.!

atVariableIfPresent: aString

"return the vliaue of my variable named aString”

{self independentVariables includesKey: aString)

ifFalse:[~nil].
“self independentVariables at: aString!

removeVariable: aString
“remove a variable named aString from my dictionary of indepernden:

variables"

(self independentVariables includesKey: aString)
ifFalse: [self inform:
'I don''t have an independent

variable named '‘'', aString,'''.‘'. ~nil].

5,073,392
105 106

self independentVariables removeKey: aString!

valueStringAtVariable: aString

"return the variable aString's value with the units"

" (self atVariable: asString) printString,' ', (self trajectory unicsfor:

astring)!

variableNames

"return a collection of the names of my variables"®
~“self independentVariables keys asOrderedCollection! !
!SLColorSample methodsFor: ‘browsing'!

browse

"open a browser on me"
SLColorSampleBrowser openOn: self! !
!SlColorSample methodsFor: 'printing'!

variableString

"return a string with the valueString of the first variakble”

~self wvalueStringAtVariable: self trajectory variableDefinicicns firsc
name!- ! '
SLObiect subclass: #SLCExperiment
instanceVariableNames: 'trajectory coefficients '
classVariableNames: '
poolDictionaries: ''
category: 'Seelab Data'!
SLCExperiment comment:
'This class holds an experiment. It contains a trajectory of class

SLTrajectory and coefficients of fit (generated from a SAS analysis on

the mainframe) that will be used in generating interpolated values. The

trajectory contains data pecints of color measurement corresponding o a

number of independent variables taking on a particular value.

trajectory : class SLTrajectory

5,073,392
107 108

coefficients : class OrderedCollection

This class will be the browsed model for SLCExperimentGridBrowser as way

of flying through the color space of the fit experiment.'!

'SLCExperiment methodsFor: 'building'!

buildFromExcelTextFile: aFileName

*builds an experiment from an ExcelTextStream. It first builds
the trajectory

and then the coefficient OrderedCollections from the Stream."

| inName directory localName traj textStream |
inName _ aFileName.
directory _ FileDirectory directoryFromName: inName
setFileName: [:localNamex | localName _ localNamex].
(directory islegalFileName: localName)
ifTrue:
laalsf siajeciocy: Slisdiectory aem.
textStream _ ExcelTlextStream oldFileNamed: inName.
trajectory buildAnExtendedTrajectczyfrom: zextizroeam,

self coefficientsFromExcelText: textStreanm;'

ccefficientsFromExcelText: aTextStream
‘ "builds the ordered collection of the coefficients cf <he
experiment from
aTextStream that has already been opened and digrested fcr its
trajectory.
. This expects (n*n + 3*n + 2)/2 coefficients of fit fcr each 2f =he

s2lor values."

| n expectedNumber actualNumber thisCo |

n _ trajectory variableDefinitions size.

expectedNumber _ ((n * n) + (3 * n) + 2) / 2.

self coefficients: (OrderedCollection new: 3).

1 to: 3 de: [:i | coefficients add: (OrderedCollection new:
expectedNumber)].

actualNumber _ 0.

5,073,392
109 110

(thisCo _ aTextStream nextStream contents asString.
(thisCc sameAs: '...')
| aTextStream atEnd)
whileFalse:
[actualNumber _ actualNumber + 1.
(coefficients at: 1)
add: thisCo asNumber.
(coefficients at: 2)
add: aTextStream nextNumber.
(coefficients at: 3)
add: aTextStream nextNumber.
aTextStream getToEndOfRow].
AactualNumbe: = expectedNumber ifFalse: [self error: 'Ccefficient

count erzorftitttrit

!SLCExperiment methodsFor: 'coefficient access'!

ccefficientIndexFor: aNumber by: anotherNumber

“This rcutine calculates the index of the xecond order term cf :he
regression equation involving the two parameters provided. Index
swapping is provided if the first parameter is larger than the seccnd

although this should not normally be the case.”

| nVars lo hi temp |

nVars _ self trajectory variableDefinitions size.
aNumber = anotherNumber ifTrue: [“nVars + 1 + aNumber].
lo _ aNumber.

hi _ anotherNumber.

le > hi
ifTrue:
(temp _ lo.
lo _ hi.
hi _ temp].
temp _ 0.

1 to: lo do: {:n | temp _ temp + (nvVars - n + 1)].
temp _ temp + nVars + 1 + hi - lo.
“temp! !

!SLCExperiment methodsFor: ‘accessing'!

coefficients

5,073,392
111 112

“return the value of coefficients.
For a description of this instance variable, see the comment

in the accessing method ‘'coefficients:'."

coefficients isNil ifTrue: (self error:'Coefficients must ccme
form Experiment Build'}.

“coefficients!

coefficients: anOrderedCollection

"set the vaiue of coefficients.

anOrderedCollecticn is ex?ected to be of the class
CrderedCollecticn.

This instance variable is used to hold the coefficients of zhe £i:

equation of the

[t

design for values 1, 2 & 3 of the color triplet space cf ==
trajectory. Element

$1 is for value 1, #2 for value 2 and #3 for value 3, each cf
which is an

OrderedCollection of its own."
coefficients _ anOrderedCollection!

coefficientsFor: anlInteger

"return the coefficients for a values regression”

"Element #1 is for value 1, #2 for value 2 and #3 for value 3,
each of which is an

OrderedCollection of its own.™"
~coefficients at: aniInteger!

coefficientsFor: anlnteger put: anOrderedCollection
"set the value of coefficients for a values regression”
*aParameter is expected to be of the class OrderedColleczion.
Element #1 is for value 1, #2 for value 2 and #3 for value 3, each
of which is an '

QOrderedCollection of its own."

coefficients at: aniInteger put: anOrderedCollection!

5,073,392

113 114

tzajectory

"return the value of trajectory.

For a descripticn of this instance variable, see the comment

in the accessing methoed 'trajectory:'.

We default on nil to building 2 trajectory from an Excel text
format file."

trajectory isNil ifTrve: [self error: 'Trajectory must ccme from
Experiment Build'}l.

~“traiectozy!

trajectory: aParameter
"set the value of trajectory.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
trajectory _ aParameter! !
'SLCExperiment methodsFor: 'independent variable access'!

atVariable: astring

"return the vlaue of my variable named aString”

(self trajectory independentVariables includesKey: aString)
ifralse: {2elf inform:
'I don''t have an independent

variable named ''', aString,'''.'. “nil].
~self trajeétcry independentVariables at: aStzing!

valueStringAtVariable: aString

“return the variable aString's value with the units"

~(self atVariable: asString) printString,' ', (self trajectory unitsfo::

aString)! !
!SLCExperiment methodsFor: 'releasing'!
release

trajectory release.

trajectory _ nil.

5,073,392
115 116

coefficients _ nil,

super release.! !
M e Wi @A W mE @ W @M @me mo @mm e wme wme wme e wme V!
SLCExperiment class

instanceVariableNames: '‘'!

!SLCExperiment class methcdsFor: ‘building'!

fromUserExcelTextFile

| inName directory localName exp |

inName _ FillInTheBlank request:'File name, please.’.

directory _ FileDirectory directoryFromName: inName setFileName:
:localNamex { localName _ localNamex].

(directory islegalFileName: localName)

ifTrue:
{ exp _ super new.

exp buildFromExcelTextFile: (ExcelTextStream ocldFileNamed: inName)!!

fromUserExcelTextFile: aFileName
| inName directory localName exp |
inName _ aFileName.
directory _ FileDirectory directoryFromName: inName setFileName:
[:localNamex | localName _ localNamex].
(directory islegalFileName: localName)
ifTrue:
[exp _ self new.
exp buildFromExcelTextFile: inName].
~exp! !
LCbject subclass: #SLCSimpieRegression
instanceVariableNames: 'experiment varCount '
classvVariableNames: '' -
poolDictionaries: '’

category: 'Seelab Data‘'!

{SLCSimpleRegression methodsFor: 'trajectory accessing'! .

colorSpace

5,073,392 '
117 118

~“self experiment trajectory colorSpace!

description

“self experiment trajectory description!

name
“self experiment trajectory name!

variableCount
varCount isNil ifTrue: [varCount _ self experiment trajectory
variableDefinitions size].

“varCount! !
'SLCSimpleRegression methodsFor: 'color calculating'!

calculateTripletFor: anOrderecdCollection
"This retuzns a SLColorTriplet subclass of the proper class fcor
the experiment
from the independent variable values present in
anOrderedCollection.”
| tripletClass newTriplet |
tripletClass _ SLColorTriplet allSubclasses detect: [:each | each
new cclorSpace = self experiment trajectory colorSpace!
ifNone:
{self inform: 'Color sample space Zces nct
exist'.
“nil}.
newTriplet _ tripletClass new.
newTriplet valuel: (self calculateValue: 1 using:
anOrderedCollecticn).
newTriplet value2: (self calculatevalue: 2 using:
anOrderedCollection).
newTriplet valuel: (self calculatevalue: 3 using:
anOrderedCollection),

“newTziplet!

calculateValue: aNumber using: dataValues

“aNumber is the regression equation tc use related to a colc:s

5,073,392
119 120

triplet value.
datavValues is expected to be an OrderedCollection of numbers."
"start with intercept. calculate linear terms. calculate 2nd order

terms.”

} coefs temp |
coefs _ self experiment coefficientsFor: aNumber.
"this returns an OrderedCocllection"
"The zeroth order term"
temp _ coefs at: 1.
"The linear terms"
1l to: self variableCount do: {:n | temp _ temp + ((coefs at: n +
1)
* (dataValues at: n))].
"The pure second order terms"
1 to: self variableCount do: (:n | temp _ temp + ((coefs at: self
variableCount + n + 1)
* (dataValues at: n) * (datavValues
at:) l. ‘
"The mixed terms"
1 co: (self variableCount - 1) do: [:n | (n+l) to: self
variableCount do: [:ml
"What coefficient index do I use?"
temp _ temp + ((coefs at: (self experiment coefficientIndexFor: =n by:
m))
* (datavValues at: n) * (dataValues
at: my)1].

~ temp!

convertValue: aValue of: anIndex
"This is generalized conversion routine that will use the
appropriate formula for

the type of conversion recuired."”

| v temp |
avalue isNil ifTrue: (“nil].
anlndex > self variableCount
- ifTrue:
(self error: 'That variable doesn not exist to

CONVERT!!'.

5,073,392
121 122

“nil].
v _ self experiment trajectory variableDefinitions at: anlndex.
v units = ‘ratio’
ifTrue:
(temp _ self ratioConvertValue: aValue of: anlIndex.
‘temp].
temp _ self normalizeValue: aValue of: anIndex.

“temp!

normalizeValue: avValue of: anlIndex

"This routine normalizes an input value using the center and range
values for the

independent variable at index anIndex. Retuzns nil f£cr bad inpu

- n
- -

‘0

| v val calc |
anIndex > self variableCount
ifTrue:
{self error: 'That variable doesn not exist to
NORMALIZE!!'.
“nil}.

v _ self experiment trajectory variableDefinitions at: an

-
5}
n
o
»

"v is an ExtendedVariableDefinition now."
val _ aValue.
val < v min
ifTrue: [val _ v min]
ifFalse: [val > v max ifTrue: [val _ v max]].
calc _ val - v center / v range.

~calc!

ratioConvertValue: aValue of: anlndex

"This routine normalizes an input value using the center and rcange

values for the
independent variable at index anIndex. Returns nil for bad inpu=z.

This is slightly different than a straight normalize. t is used

to convert an input ratio to

a coded (-1,0,1) value used for regressed value calculation.”

e

] v val cale inv |

5,073,392
123

anIndex > self variableCount

124
ifTrue:
[self error: 'That variable does not exist to RATI
CONVERT!!*.
“nil].

v _ self experiment trajectory variableDefinitions at: anlIndex.

"v is an ExtendedVariableDefinition now."
val _ aValue.
val < v min

ifTrue: (val _ v min]

ifFalse: {val > v max ifTrue: [val

_ v max]].
val = 0 ifTrue: [inv _ 999999899]ifFalse: (inv _ 1l/val].
calc _ ((1/{l+inv) - v center) / v range).
~calc! !

'SLCSimpleRegression methodsFor: ‘accessing'!

experiment
"return the value of experiment.

For a description of this instance variable, see the comment

in the accessing methed 'experiment:'."

“experiment!

experiment: aParameter
"set the value of experiment.

aParameter is expected to be of the class aClass.

This instance variable is used toc <explanation>."
experiment _ aParameter!

varCount
"return the value of varCount.

For a description of this instance variable, see the comment

in the accessing method 'vazCount:'."™

~varCount!

varCount: aParameter

5,073,392
125 126

"set the value of varCount.

aParameter is expected to he of the class aClass.
This instance variable is used to <explanation>."
varCount _ aParameter! !

e o mer == == oo o> v == e .- e .- e = == == == !

SLCSimpleRegression class

instanceVariableNames: '‘'!

!SLCSimpleRegression class methodsFor: 'instance creation'!

on: anExperiment
) | sz |
sr _ self new.
sr experiment: anExperiment.

“sz! !
'SLCSimpleRegression class methodsFor: 'testing'!

testl

"Select this and say Print It within an inspector on an experiment®

| v ret |
ret _ OrderedCollection new.
v _ OrderedCollection new.
v add: (self convertValue: 40 of: 1).
v add: (self convertValue: 50 of: 2).
v add: (self convertValue: 0 of: 3).
v add: (self convertValue: 50 of: 4).
v.add: (self convertValue: 2.5 of: 5).
1 to: 3 do:[:n{ ret add: (self calculateValue: n using: v)}.

~ret!

test2
"copy this into an inspector on a regression and inspect it."
| v ret |

ret _ OrderedCollection new.
v _ OrderedCollectien new.

v add: (self convertValue: 40 of: 1).

v add: (self convertvValue: 50 of: 2).

5,073,392
127 128

v add: (self convertValue: § of: 3).

v add: (self convertValue: 50 of: 4).

v add: (self convertValue: 2.5 of: S5).

ret _ self calculateTripletFor: v.

“ret! !

Si0bject subclass: #SLCeclerTriplet
instancevVarziableNames: 'valuel value2 value3 '

classVariableNames: '

pocelDictionaries:

category: 'SeelLab Data'!

'SLColorTriplet methodsFor: ‘color space accessing'!

colorSpace

"return a symboel denoting my color space”
self subclassResponsibility! !
tSLColorTriplet methodsFeor: 'accessing'!

valuel
"return the value of valuel.

For a description of this instance variable, see the commen:

in the accessing methed 'valuel:'."

valuel isNil ifTrue: (self valuel: 0.0].

“valuel!

valuel: aNumber
"set the value of valuel.
aNumber is expected to be of the subclass of Number.
This instance variable is used to hold value 1 of the triplet.”

valuel _ aNumber.
self changed: #valuel!

value2

"return the value of valuel.

5,073,392
129 130
asCIELAB

"return a new color triplet converted to CIELAB"
self subclassRespensibility!

asCIZLUV _
For a description of this instance variable, sees the ccomment
in the accessing method 'valuel2:'."

value2 isNil if7True:(self value2: 0.0].

“valueld!

valuel: aNumber
"set the value of valuel.
aNumber is expected to be of the subclass of Number.

This instance variable is used to hold value 2 of the triplet."

value2 _ aNumber.

self changed: #valuel!

valueld
"return the value of valued.
For a description ¢f this instance variable, see the comment:
in the accessing method 'value3:'."

valued isNil ifTrue:([self value3: 0.0].

“value3!
valueld: aNumber
"set the value of valuel.
aNumber is expected to be of the subclass of Number.

This instance variable is used to hold value 3 of the triplez.”

valued _ aNumber.

self changed: #valueld! !
!SLColorTriplet methodsFor: 'conversion'!

asCIEFMCII

"return a new color triplet converted to CIEEMCII"™

self subclassRespons B

5,073,392
131 132

"return a new cclor triplet converted to CIELUV®
self subclassResponsibility!

aslabHunter

"return a new color triplet converted to Lab"
self subclassResponsibility!

asRGBGuns

"return a new color triplet converted tc RGB"
self subclassResponsibility!

asxYz

"return 2 new color triplet converted to XY2"
self subclassResponsibility!

as¥xy

"return a new color triplet converted to Yxy"
self subclassRessponsibility! !
1SLColorTriplet methodsFor: 'value range accessing'!

valuelRange
“gereIn thn cengn foT emige 17

self subclassResponsibilicy!

value2Range

"return the range for value 2"
self subclassResponsibility!

value3Range

"return the range for value 3"

self subclassResponsibilicy! !

5,073,392
133 134

'SLCelozTriplet methodsFor: 'browsing'!

browse

"open a browser on me"
SLColorTripletBrowser openlOn: self! !
'SLColorTriplet methodsFor: ‘testing'!
producable

self subclassResponsibility! !

SLObject subclass: #SLVariableDefinition
instanceVariableNames: 'name units defaultValue '
classVariableNames: ''
poolDictionaries: '

category: ‘Seelab Data'!

'SiVariableDefinition methodsFor: ‘'accessing'!

defaultValue
“"retuzn the value of defaultValues.
For a description of this instance variable, see the comment
in the accessing method ‘defaultValue:'."

defaultValue isNil ifTrue: {self defaultValue: 0].

“defaultvValue!

defaultValue: aNumber
"set the value of defaultValue.
aNumber is expected to be a subclass of the class Number.
This instance variable is used to hold the default value far a

variable defined by me."
defaultValue _ aNumber!

name
"return the value of name.
For a description of this instance variable, see the comment

in the accessing method ‘name:'."

5,073,392
135 136

name isNil ifTrue:(self name: 'not defined yet'].

“name!

name: asStzing
"set the value of name.

astring is expected to be of the class String.
This instance variable is used to hold the name c¢f this variak_.e."”

name _ aString!

wnics
"return the value of units.
For a description of this instance variable, see the comment
in the accessing method 'units:'."

unics isNil ifTrue:[self units: 'not defined vyet'].

“units!

units: aString
"set the value of units.
aString is expected to be of the class String.
This instance variable is used to hold a string naming the unic

far this variable."

units _ aString! !

M e = mw mw mm m» wm em e w- mm = ee me e= ww w= !

SLVariableDefinition class

instanceVariableNames: ''!

'SLVariableDefinition class methodsFor: 'instance creation'!

fromUser]
| string answer nameString unitﬁStzing defaultvValue |

“"create and return a new instance of me based on the user's isput”

{string _ FillInTheBlank request:'Enter the name for the variable:'.
string = ''] whileTrue: (answer _ self confirm:'Bad Input!!!!'!!

Do you want to try again?‘.

answer ifFalse:[salf .

'Operation Aborted!!''. ~nil}].

5,073,392
137

namesString _ string.

138

[string _ FillInTheBlank regquest:'Enter the units for the variable:'.

string = ''] whileTrue: [answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?',
answer ifFalse:{self inform:

'Cperation Aborted!!*'. “nill].

unitsString _ string.

{string _ FillInTheBlank request:'Enter the default value for the

variable:*.

stzing = ''] whileTrue: (answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?’'.
answer ifFalse:(self inform:

'Operation Aborted!!'. “nill]).

defaultValue _ Compiler evaluate: string.

~self name: nameString units: unitsString defaultValue: defaultvalue!

name: nameString units: unitsString defaultValue: aNumber

| slvd |

"create and rezurn 2 new instance of me"

slvd _ self new.

slvd name: nameString.
slvd units: unitsStrzing.
slvd defaultValue: aNumbaer.

“slvd! !

SLVa:iableDetinition subclass: #SLCExtendedVariableDefiniticn

instancevariableNames: '‘type center range min max xStar

curzentValue *

classvariableNames: ‘''

poclDicticnaries: '!'

category: 'Seelab Data'!
SLCExtendedVariableDefinition comment:
"This class extends the SLVariable definition for use

definition of

with the SAS x=

5,073,392
139 140

x* = (x=¢)/r.

This is used with the coefficients of the equation of fit to generate a

mul:idiminsionally fit color triplet coordinate, one for each.

For speed, x* is stored internally as xStar. Any change in x,¢, cI

"

value invokes a recemputation of xStar.'!

'SLCExtendedVariableDefinition methodsFor: 'accessing'!

centcer
"return the value of center.
For a description of this instance variable, see the comment

in the accessing method ‘'center:'."
“center!

center: aParamster
"set the value of center.
aParamater is expected to be of a class convertable to Float.

This instance variable is used to compute xStaz"

center _ aParameter asNumber asfloat.

currentValue isNil | center isNil
{fralse:
(self xStarSet].

“center!

currentValue
"return the value of currentValue.
For a description of this instance variable, see the comment

in the accessing methed 'currentValue:'. "
“currentValue!
currentValue: aFarameter

"set the value of currentValue.

aParameter is expected to be of a class convertable to Float.

5,073,392
141 142

This instance variable is used generate color values for zhe

equations”

currentValue _ aParameter asfFloat.
self xStarSet.

~xStar!

"return the value of max.
For a descziption of this instance variable, see the comment

in the accessing method 'max:'."
“max!

max: aParameter
"set the value of max.
aParameter is expected toc be of a class convertable to Float.

This instance variable is used to set up the browser an gauges”

max _ aParameter asNumber asFloat!

"return the value ¢of min.
For a description of this instance variable, see the comment

in the accessing method 'min:'."
“min!

min: aParamster
"set the value of min.
aParameter is expacted to be of a class convertable to Float.

This instance variable is used to set up the browser an gauges"

min _ aParameter asNumber asfloat!

range
"return the value ¢f range.
For a description of this instance variable, see the ccmment

in the accessing method 'range:'."

~range!

5,073,392
143 144

range: avalue
| temp |
"set the value of range.
aValue is expected to be of a class convertable te Float.

This instance variable is used to compute xStar"

temp _ aValue asNumber asfloat.
texp = 0
ifTrue:
[self error: 'range cannot be zero!!''.
B
range _ temp.
currentValue isNil | center isNil
ifTrue: [inil]
ifralso:.
[self xStarSet.

~xStar]!

xStar
*return the value of xStar.
For a description of this instance variable, see the comment

in the accessing method 'xStar:'."
“xStar!
xStar: aParameter
"Cannot be done. This just holds values computed from

currentValue, center and

range "

self error: 'xStar cannot be set directly!!’.

~“nil!
xStarSet
zange = 0
ifTrue:
[self error: 'range cannot be zero!!',
“nil].

range isNil | center isNil | currentValue isNil
ifTzue:

5,073,392
145 146

{self error: 'X Star cannot be Computed!!'.
“nil]
ifralse: (xStar _ (currentValue - center) / range].

“xStar! !
'SLCExtendedVariableDefinition methodsFar: 'Zaledsdng'-

release
type _ nil,

center _ nil.
range _ nil.
min _ nil.
max _ nil.

xStar _ nil.

super :éloase! '

Pee o= == == cm ee ev e= e e e c= == en e = == e= T!

SLCExtendedVariableDefinition class

' instancevVariableNames: ''!

!SLCExtendedVariableDefinizion class methodsFor: 'instance creation''’

fremUser
| string answer nameString unitsString defaultValue cenzerValue
rangeValue minValue maxvValue |

"create and return a new instance of me based on the user's insuz®

string = ''] whileTrue: [answer _ self confirm:'Bad Input!!!'!!!
Do you want to try again?'. ‘
answer ifFalse:(self inform:

'Opezation Aborted!!'*. “~nil}].

nameString _ string.

[string _ FilllnTheBlank request:'Enter the units for the variable:'.
stzing = ''] whileTrue: (answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?'.

answer ifFalse:(self inform:

‘Operation Aborted!!'. ~nill].

unitsString _ string.

147
(string _ FillInTheBlank request:

variable:'.

string = ''] whileTrue: [answer _
Do you want to try again?',
answer ifFalse:(self inform:
“nil}].

defaultValue _ Compiler evaluate:

‘Operation Abocrted!!'.

(string _ FillInTheBlank request:
variable:'.

string = '']) whileTrue:(answer _
Do you want to try again?'.
answer ifFalse:{self inform:
‘Cperation Aborted!!'., ~nil}].

centerValue _ Compiler evaluate:

{stzring _ FillInTheBlank request:
variable:'.

string = ''] whileTrue: (answer _
Do you want to try again?'.
answer ifFalse:(sel? infomm:
‘Operation Aborted!!'. ~nil}]).

rangevValue _

(string _ FillInTheBlank request:

vaciable:"'.

string = ''] whileTrue: (answer _
Do you want to try again?'.
answer iffalse:(self inform:
‘Operation Aborted!!'. “nil]].

minValue _

5,073,392
148

'Enter the default value for zhe

string.

'Eanter the center value for ;he

string.

'Enter the default value for the

Compiler evaluate: string.

-
-

'Enter the default value for che

Compiler evaluate: string.

(string _ FillInTheBlank request:'Enter the default value for the

variable: ‘.

string = ''] whileTrue: (answer _
Do you want to try again?'.
answer ifFalse:(self inform:
'Operation Aborted!!'., “nil]].

maxValue

Compiler evaluate: string.

5,073,392
149 150

~self name: nameString units: unitsString defaultValue: defaultValue

center: centervValue range: rangeValue min: minValue max: maxValue!

name: namesStrzing units: unitsString defaultValue: aNumber center:
secondNumber range: rangeNumber min: minNumber max: maxNumber

"create and return a new instance of me"

| slcevd t
slcevd _ self new.
slcevd name: nameString.
slcevd units: unitssString.
slcevd defaultValue: aNumber.
slcevd center: secondNumber.
slcevd range: rangeNumber.
slcevd min: minNumber.
slcevd max: maxNumber.
~slceva! !

Below is the listing for file 'ExcelTextStream.st' in standard

fileIn/fileQut format:

FileStream subclass: #ExcelTextStream

instancevVariableNames: 'endOfRow endOfSheet row column
currentObject '

classVariableNames: '’

poclDictionaries: .

category: 'User Interface Tools'!
ExcelTextStream comment:)
'I am a Stream over a File saved under Excel Qs a Text file. I allow
reading of my cells only at this time although I hope to grow into a
full-fledged 1/0 information pipe for my Smalltalk station users.'!

'ExcelTextStream methodsFor: 'element accessing'!

acquireMultilineText

"This returns a String that is obtained by reading from the
current cell down a

column of cells until a cell ending in three periocds. A string :s
retuzrned. This

methoed will eat an entire spreadsheet column however so make suze

5,073,392
151 152

the last
cne of the set you desire DOES END with three periods.”

| outString aline |

outStzing _ ''.
aline _ self nextCellAsStringOfMax: 75.

{ExcelTextStream threeDotQuery: aline]
whileFalse:
(self getToEndCfRow.
outStzring _ outString , aline.
{(outString at: (ocutString size)) = ' ')
ifFalse: (outString _ outString , ' '].

aline _ self nextCellAsStringOfMax: 73].

outString _ outString , aline.
self getToEndOfRow.

self currentObject: outString!

getTeEndOLfRow
| curzentChar tempEndRow newRow |
endOfRow
 ifFalse:
{curzentChar _ self next.
tempEndRow _ self endOfRow.
{curzentChar = Character cr | self atEnd]
whileFalse: (currentChar _ self next].
endOfSheet _ self atEnd.
endOfRow _ currentChar = Character cr | endOfSheet.
newRow _ tempEndRow & endOfShest not.
newRow
ifTrue: -
{self column: 1.
self row: self row + 1]
ifralse: (self column: self column + 1].
self currentObject: nil)!
nextCellAsString

"Returns the next characters up toc a VT or CR as a String.
length determined by default length described in

nextStream."

5,073,392

153 154
| newStzing outStream | .

outStream _ self nextStream.
newString _ outStream contents asString.

self currentObject: newString.

“newStzing!

nextCellAsStringOfMax: anInteger
"Returns the next characters up to a VT or CR as a Stroing.”

| newStzing outStream |
cutStream _ self nextStreamOfMax: anlnteger.

newString _ outStream contents asString.
self currentCbiect: newString.

“newString!
nextNumber
"Returns the next characters up to a VT or CR as a Floatz."

| newNumber outStream |

cutStream _ self nextStream.

newNumber _ outStream contents asNumber.
self cuzrentObject: newNumber.

“newNumber!

nextStream
"Returns the next characters up to a VT or CR as a Stream of 25

characters maximum."

I currentChar cutStream tempEndRow newRow |
outStream _ WriteStream on: (String new: 25).
currentChar _ self next.

tempEndRow _ self endOfRow.
(currentChar = Character tab | (currentChar = Character cr) self

atind]
whileFalss:
{outStream nextPut: currentChar.
currentChar _ self next].

endOfSheet _ self atEnd.
endOfRow currentChar = Character cr | endOfShsat.

newRow _ tempEndRow & (endOfSheet not).
{newRow)

ifTrue:

5,073,392
155 156

(self column: 1.
self zow: self row + 1)
ifralse: [self column: self column + 1].
self currentObject: outStream.

“outStream!

nextStreamOfMax: anlnteger
"Returns the next characters up to a VT or CR as a Stream cf

anlnteger characters maximum. "

| currentChar outStream tempEndRow newRow |
outStream _ WriteStream on: (String new: anlnteger).
currentChar _ self next.
:cmpandkcw>_ self endOfRow.
[{curzentChar = Character tab | (currentChar = Character cr) | self
atEnd]
whileFalse:
{outStream nextPut: currentChar.
currentChar _ self next].
endOfSheet _ self atEnd.
endOfRow _ currentChar = Character cr | endOfSheet.
newRow _ tempEndRow & (endCfSheet not).
{newRow)
ifTrue:
{self column: 1.
self row: self row + 1]
ifralss: (self coclumn: self coclumn + 1].
self currentObject: cutStream.

“outStream!

reset
self row: nil.
self column: nil.
self endOfRow: nil.

self endOfSheet: nil.
super reset! !

1ExcelTextStream mathodsFor: ‘accessing--private’!

column: anlinteger

5,073,392
157 158

"set the value of coclumn.
anInteger is expected tc be of the class LargePositivelnteger.
This instance variable is used to keep track of where we are .-

the sheet.”
column _ anInteger!

currentObiect

“currentObiject!

currentObject: anObiect

cu::entopjoct _ anCbject!

endOfRow: aBoolean

"set the value of endOfRow.

aBoolean is expected to be ¢of the class Boolean.

This instance variable access is used to to indicate to the
current put operation on the LotusStream is of the last element of Inhe

current row. A subssquent put will start a new row."
endOfRow _ aBoolsan!

endOfSheet: aBoolean
"set the value of endOfSheat.
aBoolean is expected to be of the class Boolean.
This instance variabls access is used to to indicate to the

current put opsration on the LotusStream is of the last element c¢f the
curzent shest. No subseguan:t put wuw"

endOfSheet _ aBoolean!
row: anlnteger
“set the value of row,)
anInteger is expescted to be of ﬁhe class Integer.
This instance variable is used to indicate where in the shee: we

aze.

This setting method will position the sheet to the proper reow. o
will return an error if the shest does not contain that row. The column

will be set to the value of the instance variable.”

row _ anlnteger.! !

5,073,392
159 160

'ExcelTextStream methedsFor: 'positicn assessment'!

column
| tempRow |
“return the value of column.
For a description of this instance vaciable, see the ccmment

in the accessing method ‘'column:'.”

column isNil
ifTrue:
(column _ LargePositivelnteger new.
column _ 0].
"Drive initializaticn of row valus.”
teampRow _ sslf row.

“column!

endOfRow
"return the value of endOfRow.
It is a Boolean true if the last accessing coperation zeturied :t-e

last element of the row of ths sheet.”

en8UTow 1sKNI1

ifTrue:
(endCfRow _ Zfalse].

~endOfRow!

endCfsSheet
*return the value of endCfSheet.
It is a Boolean Zrue if the last accessing operatiocn returned =he

last element of the sheet."”

endQfSheet isNil
ifTrue:
(endCfSheet _ false].

“endCfSheer!

"return the value of row.
For a description of this instance variable, see the cormen:

in the accessing method ‘row:'."

5,073,392

161 162
zow isNil
ifTrue:
{row _ LargePositivelnteger new,
row _ 1].
“row! !

ExcelTextStream class

instanceVariableNames: ''!

'ExcelTextStream class methcdsFor: 'element testing'!

threeDotQuery: aString
! hewlong thelastThree |
“Thig aethod 2eUDs ¢ T8 LT FITTIR, TIN TITEMNTYY UL The Mmethod, ends

with three periods. Returns true if it does. Recturns false on nil.”
{aString isNil) ifTrue:(~false].

howlong _ asStzing size.

{howlong < 3)ifTrue:({“~false].

thelastThree _ aString copyFrom: (howleng - 2) to: hoewlong.
~(thelastThree = ', . . ')! !

Below is the listing for file 'ColorFormView.st' in standard

fileln/fileQut formac:

View subclass: #ColorFarmView
instanceVariableNames: 'dispform extent '
classVariableNames: ‘!’
poclDictionaries: '’
category: 'Color-Example’!

ColorFormView cormment: '

'I am a view of a colored area that matches my inse:DisplayBoxf :anm

used with a ColorMapEditor as my model. T change color when my models

coler map index changes.
dispForm <Form> A form to display color

extent <Point> used in composing.‘!

'ColorFormView methodsFor: 'displaying'!

display

5,073,392

163 164
self isUnlocked

ifTrue: (self compose].

super display!
displayforn

ColorDevice new displayForm: dispForm onFrameBufferAt: self

insetDisplayBox origin!
displayView

sel? JisplayForm! !
'ColorFormView mathodsFor: 'updating'!

update: aParameter

aParamerer == #maplndex
ifTrue: (self setMaplndex.

self display)! !
‘ColorformView methodsFor: ‘'composing'!

compose
"This creates the Form for the display, then sets the map index,

which really means sets each of the pixels to the maplndex value.®

(extent ~= nil and: [extent = self insetDisplayBox extent))
ifTrue: (“self].

extent _ self insetDisplayBox extent.

dispForm _ Form
extent: (self insetDisplayBox width * ColorDevice

bicsPerPixel) .
, @ (self insetDisplayBox 8eiqht).
self secMaplndex!

setMaplndex
| bits pat bitsPerPixel indexi

bitsPerPixel _ CclorDevice bitsPerPixel.
index _ model mapIndex.

5,073,392
165 166
pat _ index.

(16 // bitsPerPixel) - 1 timesRepeat: [pat _ (pat bitshif::
bizsPerPixel) + index].
bits _ dispForm bits.

1 to: bits size do: [:i | bits at: i pur: paz].! !

!ColorFormView methodsFor: 'accessing'!
dispForm

~dispForm! ! . :
Below i3 the listing for file 'Color-Interface.st' in standazd

fileIn/fileQut format:

Sbiegs suclass: #Colozlevice
instancevariableNames: ''
classVariableNames: 'BitsPerPixel MaxGunValue MaxMapIndex '
coollictionaries: '!'
category: 'Color-Interface'!
ColorDevice ccmment:
‘"I am an interface to the color display hardware. I can display a

color form and change the color map.”
This is the extent of the documentation for this portal to the diasplay.

This class only has class variables., Thus the only use for instances cf
zhis class is zo provide access to the value of these global variables

and to the methods provided for instances and the class,

Qbsject subclass: #ColcrDevice
instancevVariableNames: ''''
classVariableNames: ''BitsPerPixel MaxGunValue MaxMapIndex ''
poolDictionaries: '''!'

category: ‘'Color-Example'’

BitsPerPixel is set at class initialization time to 8. This corrzesponcd
to the number of bits required to store the maxMaplndex value since zihe
bitmap stores CLUT indices, not coler values.

ColorDeviceiinitialize is the only sendar of the bitsPerPixel: message.
Its value i3 accesssd by the ColorBarView| and ColorfFormView|ccompose
methods, ColorSarView(filllIn:inRectangle: and ColorFormView!secMapindex.

ColorDevice also accesses in displayMap and example class mechods.

: 5,073,392
167 168

MaxGunValue is initialized to the value returned by ColorDevice
classigetMaxGunValue which invokes a primitive. Its only other use is

the accessing method ColozDevice classimaxGunValue. No setting is
possible which is understandable since this is a hardware-depencen:

value.

MaxMapIndex is initialized 2o 255 in ColorDevicelinicialize, the cnlvy
place it is set. It is used in ColorMapEditcr =0 cdetermine the size =2
izs cclorMapTable instance variable. It is generally accesed wrern a
iocp is performed to £ill something (like the colorMapTable) with wva._.es

and that loop regquires an upper index.

LUT access is provided (cutput or setting only) by the
se:CalorMapEntry}... method. The primitive-referencing methecd
referenced in it is wrong. You basically provide three gun values
cetween 0 and the value provided by maxGunValue methed ¢of an instance :I
ColorDevice. This illustrates the usual sequence of access,
instantiating a ColorDevice, sending it all the displayForm:,
maxGunValue and setColorMapEntry: messages you want to. The Colorslevice
class also has maxGunValue, bitsPerPixel and maxMapIndex accessing
metheds although I would not use them. Tampering with the values cf =-e

class variables beyond initialization would not be wise.'!

'ColorDevice methodsFor: 'primitives'!

displayForm: aForm onframeBufferAt: aPoint
"Display aForm on the frame buffer at aPoint."

~self displayForm: aForm onFrameBufferAt: aPoint bitsPerPixel:

BitsPerPixel!

displayForm: aForm onFrameBufferAt: aPoint bitsPerPixel: anlnteger

"Display aform on the frame buffer at aPoint."

"aForm is of class Form but it is bitsPerPixel thick. The way

that that is
encoded is sequentially in bitsPerPixel bits for each pixel in z=he

bitmap of the

Form. The value supplied as aPeint is in screen pixels, nct

5,073,392
169 170

distizled Ty the

number of bitsPerPixel. bitsPerPixel, I'm sure, is used =:
dissect the WordArray

bitmap into the appropriate chunks before stuffing the

framebuffer.”

<primitive: 245>

“nil!

maxGunValue

“return the maximum color gun value."

"This is used to determine what the maximum value supplied i

setColorMapEntry: ... method for the three colors in the CLUT can

for the SuperMac Spectrum, this returns 65535."

<primitive: 247>

self primitiverailed!

primativeSetColorMapEntry: aninteger toRedValue: red greenValue: gsreen

blueValue: blue

.....

ce.

"Sat the color map index for aninteger to the given red green and

blue values.

Create a notifier if any of the values is out of range. Answer

nil if the index

is not valid on the current system."

<primitive: 246>
(red < 0 or: (green < 0 or: (blue < 0]})) ifTzrue: [“self

primitiveFailed].

(red > self maxGunValue or: [green > self maxGunValue or: (b

self maxGunValuel})
ifTrue: (“self primitiveFailed].

]
-

ue

>

"values are ok, since the primitive failed iz must be tecause zne

index is invalid"®

“ail!

sezColozMapEntry: anlInteger toRedVaiue: red greenValue: green tlueVali.e:

blue

| mylnteger redT blueT greenT |

5,073,392
171 172

"Set the CLUT entry at anlinteger to the given red green and blue
values.

Create a notifier if any of the values is ocut of range. Answer
nil if the index

is not valid on the current system."

"Patch supplied by Beckmann since the primitive accesses the map
backwazd (at least as read by this category's other methods and the
XLUTZ and Control Panel desk accessories.”

“Tests alsc Supplicd by Beckmann since the primitive does not werx
if red green and blue are not of class Integer; it produces no erzcr anc
does not change the CLUT. 1If the cbjects set focr red green and biue =0

not understand asInteger conversion, NOW an error will resul:z.”

mylnteger _ (255 - anInteger) asinteger.

"myInteger _ anlnteger.”

redT _ red asinteger.

blueT _ blue asinteger.

green? _ green asintegsr.

self primativeSetColorMapEntry: mylnteger toRedValue: red?T

greenValue: greenT blusValus: blueT! !

ColozDevice class
instanceVariableNames: *'!

'ColorDevice class methodsFor: ‘class initializaticn'!

initialize

"Initialize class variables."

"ColcorDevice initialize"

self bitsPerPixel: 8.

MaxGunValue _ self getMaxGunValue.

self maxMaplIndex: 255.1 !
!ColorDevice class methodsfor: 'accessing'!

bitsPerPixel

“BitsPerPixel!

5,073,392
173 174

bitsPerPixel: anlnteger

"Sent only by ColorDevice class initialize”

BitsPerPixel _ anlnteger!
maxGunValue

“MaxGunValue!
maxMaplndex

“MaxMapIndex!

maxMaplIndex: aninteger
"Sent only by ColozDevice class initialize"

MaxMapIndex _ anInteger! !
!ColorDevice class methodsFor: 'examples'!

displayMap

"Draw current CclozrMap DIRECTLY onto the display"
“ColorDevice displayMap"
1fsrm ba x y rand val bb c¢d bitsPerPixel maxMapIndex row
g2 _ ColorDevice new.
bitsPerPixel _ ColorDevice bitsPerPixel.
maxMapIndex _ ColorDevice maxMapIndex+l.
row _ maxMapIndex sqrt truncated.
form _ Form extent: (lé*bitsPerPixel) € (16).
"Here, a ByteArray is used instead of a wQ:dAé:ay"
ba _ ByteArray new: {l6*l6*bitsPerPixel) // 8..
form extent: (l6*bitsPerPixel) @ 16 offset: 0Q0 bits: ca.
x _ 0.
1 zo: zow do: [(: i}
1 to: row do: {:3 |
ba atAllPut: x.
x x+l.

cd displayForm: form onFrameBufferAt: (i*16)Q@(3*16);..!

example
"Draw cclored lights on the display and make them change by

changing the color map.”

5,073,392
175 176

"ColozDevice example”

iform ba x y rand val bb cd bitsPerPixel maxMapIndexzow
maxMapIndex row maxGunValuel

maxGunValue _ self maxGunValue.

cd _ self new.

bitsPezrPixel _ self bitsPerPixel.

maxMaplndex _ self maxMaplndex+l.

form _ Form extent: (l6*bitsPerPixel) @ (16).

row _ maxMapIndex sqrt truncated.

ba _ ByteArray new: (15*16*bitsPerPixel) // 8.

form extent: (l16*bitsPerPixel) @ 16 offset: 030 bits: ba.

x _ 0.

"

te: zow do: (: i |
1 to: row do: [:3 |
ba atAllPut: x.
x _ x+l.
ed displayForm: form onFrameBufferAt: (i*16)@(3*16)]].
rand _ Random new.
bb _ [(({rand next * maxGunValue + 0.5) rounded
min: maxGunValue -1) |}.

[Senscr anyButtonPressed] whileFalse:

[cd
setColorMapEntry: (((rand next * maxMapIndex + 0.5) rounded
min: {(maxMapIndex
- 2)}
max:
S)
toRedValue: bb value
greenvalue: pb value
bluevalue: bb value].
bb _ nil! !

'ColorDevice class methodsFor: ‘primitives'!

getMaxGunValue

"Answer the largest possible valuevtor each gun (red, green, blue)
for

color map entries.”

"Sent only by ColozDeive class initialize"

<primitive: 247>

5,073,392
177 178

"Tor systems without the primizive, answer 0"

~Q! !
'ColorDevice class methodsfor: 'private'!

computeMaxMaplndex

"Nobody sends this message”

| index max colorDevice value |

colerlevice _ self new.

index _ 9.

max _ self maxGunValue.

(value _ index even ifTrue: [max]) ifFalse: [T}

(colozrDevice
setColozMapEntry: index
toRedValue: value
gresnValue: value
bluevValue: value) == nil)

whileFalse: [index _ index + 1].

~index -~ 1! !

CsolorDevice initialize!
View subclass: #SLCColorecdBoxesView
instanceVariableNames: 'cal device

t

¢lLassVariableNames:

poclDicticnaries:

category: 'Ceclor-Interface'!

SLCColoredBoxesView comment:

‘This class is used in the Gauged Pactch,

browsezs'!

'SLCColoredBoxasView methodsFor: 'scheduling'!

buildAndAssembleforinsertion

"build the subviews and arrange them in a view for inserzion.

by 10 matzix”

three by three and N Dy N

A
-

5,073,392

179 180
I it |
it _ self
buildAandAassembleFforInsertionindexBase: 1T
rows: 10
columns: 10.
~ie!

buildAndAsssembleForinsertionindexBase: baselnteger rows: zowintege:
columns: columninteger

| topView cd gray baselndex rowMax columnMax boxWidzh toxHergnt
thisRow thisColumn thisIndex box |

topView _ SLCColoredBoxesView new model: self.
topView borderwidth: 1.

€8 _ ColozDevice new.

gray _ (cd maxGunValue) // 2.
baselndex _ baselnteger.
rowMax _ rowlnteger.
columnMax _ columnlinteger.
boxWidth _ l/columnMax.
boxHeight _ 1/rowMax.

1 to: rowMax do: [:row!

1 to: columnMax do: [:column |

thisRow ; row -1,

thisColumn _ column - 1.

 thisIndex _ baselIndex + thisColumn + (thisRow*columnMax).

box _ SLCColcredRectangle new.

box mapIndex: thislIndex.

cd setColorMapEntry: thislndex toRedValue: ((60000) asInteger)
greenvalue: (60000~-(thisIndex*500)) blﬁ.v;lue: (20000~ (thisIndex=150)).

topView addSubView: bex in: (((thisColumn*boxWidth) @
(thisRow*boxHeight)) extent: (boxWidth @ boxHeight)) borderWidth: 2.

11.
“topView!

buildAndAssembleForinsezrtionUsing: anOrderedCollection IndexBase:

baselnteger rows: rowlnteger columns: columninteger

5,073,392

181 182
| topView cd gray baselndex rowMax columnMax boxWidth boxHeighs

thisRow thisColumn thisIndex box tripletIndex thisTriplet |

"build the subviews and arrange them in a view for insertisn®

cal _ SLCColerCalibzation new.

topView _ SLCColoredBoxesView new model: self.
topView borderWidth: 1.

cd _ ColorDevice new.

gray _ (cd maxGunValue) // 2.
aemmintex _ SwsniteegeT.
rowMax _ rowlnteger.
columnMax _ columninteger.
boxWidth _ 1/columnMax.
boxHeight _ 1/rowMax.

1 =¢: rowMax do: [:czowl
1 tor columnMax do: [:column |
thisRew _ row =~1.
thisColumn _ column =~ 1,
thislndex _ baselndex + thisColumn + (thisRowrcolumnMax).
tripletIndex _ thislndex - baselIndex + 1.
thisTriplet _ cal computeGunsFrom: (anOrderedColleczion at:
tripletlIndex).
box _ SLCColoredRectangle new.
box mapIncex: thislIndex.
cd satColorMapEntry: thislndex toRedValue: (thisTriplet valuel)
greenvalue: (zhiérriple: value?2) blueValue: (thisTriplet valuel).
_topView addSubView: box in: (((thisColumn®*boxWidth) @
(thisRow*boxHeight)) extent: (boxWidth @ boxHeight)) borderzWidzh: 2.
11.
“copView! !

'SLCColoredBoxesView methodsFor: 'box color accessing'!

changeBox: boxIndex to: aColorTriplet

"self here is the BoxView"

| guns dev |

guns _ self cal computeGunafrom: aColerTriplet.

5,073,392
183 184

dev _ self device.

dev setColorMapintry: (self subViews at: boxIndex) mapIndex
toRedValue: guns redGun
greenValue: gquns greenGun

blueValue: guns blueGun! !

!SLCColoredBoxesView methodsFor: 'calibration access'!
cal

cal isNil ifTrue:{cal _ SLCColorCalibraticn rnew.].

~cal!

device
device isNil ifTrue:(device _ CoclorDevice new.].

“device! !
'SLCCcloredBoxesView methodsFor: 'releasing'!

release
cal _ nil.
device _ nil.

super release! !

"y

"-- - - aw - .. - - - am - - - - - - e - - - - - - - - - - - - -

SLCCcloredBoxesView class

instanceVariableNames: '‘'!

!SLCColoredBoxesView class methodsFor: 'instance creation'!

gn: anCrderedCollection baselndex: index rows: rowlnteger columns:
columninteger
| v boxView avView |
v _ self new.
boxView _ v
buildAndAssemblefozinsertionUsing:
anOzdaredCollecticn
IndexBase: index
rows: rowlinteger

columns: columnlnteger.

5,073,392
185 186

aView _ View new.
aView addSubView: boxView.

“aView!
openlOn: anOrderedCcllection baselIndex: index rows: rowlnteger columns:
cclumninteger

! v boxView topView |

v _ self new,

boxView _ v
buildAndAssemblefForinsertionUsing:

anQrderedCollection IndexBase: index
rows: rowlnteger

columns: columninteger.

topView _ StandardSystemView
model: self
label: 'General’

minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView bordezWideh: 1.

topView
addSubView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
bozrdezWidth: 2.

sopView controller cpen! !

1SLCColoredBoxesView class methodsFor: 'examples'!

example
"SLCCcloredBoxesView example”

| v copView boxView |

v _ Self new.
boxView _ v buildAndAssembleForInsertion.

topView _ StandardSystemView
model: self
label: 'ColoredBoxesView Example’

ainivesion: 258 € 248,
topView cacheRefresh: false.

topView borderWwidth: 1.

topView

5,073,392
187 188
addSubview: boxView

in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderwidth: 2.

topView contzroller open!

example2
"SLCColoredBoxesView examplel”™

! v topView boxView rowInteger columninteger string |

stzing _ FillInTheBlank request: 'Enter the number cf cells in :zre -
x direction:'.

columnlnteger _ string asNumber.

string _ FillInTheBlank request: 'Enter the number c¢f cells :n z:ne
y direction:'.

rowlnteger string asNumber.

rowinteger * columninteger > 100 {fTrue: [self error: 'Canac: 2=

more than 100%!'}].

v _ self new.
boxView _ v

buildAndAssembleForIinsertionindexBase:

(&)

'

zOwWsS: rowlnteger
columns: columninteger.
topView _ StandardSystemView
model: self)
label: 'ColoredBoxesView Example'
minimumSize: 250 @ 250.
topView cacheRefresh: false.
-topView borderzWidth: 1.
«TpTiww
addSubvView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 2.

topView controller open!

5,073,392
189 190
example3

"SLCColoredBoxesView example3”™
*this shows how to change a boxe at a particular index to a color
corresponding to a particular colorTriplet through the calibraticn and

the device."
| v topView boxView rowlInteger columnInteger string tx |
string _ FillInTheBlank request: 'Enter the number of cells in the

x direction:'.

columnInteger _ string asNumber.

3

string _ FilllnTheBlank request: 'Enter the number of cells the

[N
».
S

y direction:'.
rowlnteger _ string asNumber.
rowlnteger * columnInteger > 100 ifTrue: [self error: 'Cannot do

moze than 100!'!'].

v _ self new.
boxView _ v
buildAndAssembleForInsertionIndexBase: 10
rows: rowlnteger
columns: ceclumnInteger.
topView _ StandardSystemView
model: self
label: 'ColoredSoxesView Example'
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderWidth: 1.
topView
T MView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 2.
"Here 1s how you can change the color of a box:"

tr _ SLLabHunterColor new.

tr L: 70.
tr a: 10.
tz b: 20.

boxView changeBox: 1 %o: tr.

topView controller open! !

5,073,392
191
ColorFermView subclass: #SLCColoredRectangle
instanceVariableNames: ‘'mapIndex '

classVariableNames:

LR}

poclDicticnaries:
category: 'Color-Interface'!

'SLCColcredRectangle mathodsFor: 'compesing'!

displayView
*Display my contents”

IdisplayBox lastTop |
displayBox _ self insetDisplayBox.

~self £ilIIn: Display

inRectangle: (displayBox origin corner:

£i1Iln: aMedium inRectangle: aRectangle

"Fill in aRectangle with the bar color.”

| ext displayForm |
ext _ aRectangle extent.

192

displayBox corners) !

ext _ (ext x * ColorDevice bitsPerPixel) ¢ ext y.

sxtent _ self insetDisplayBox extent.

dispform _ Form

extent: (self insetDisplayBox width * ColeorDevice

bitsPerPixel)
@ (self insetDisplayBox height).

self setMaplindex. "Fill in all form bits with mapIndex value"

displayForm _ self dispfomm.

displayForm extent: ext offset: O@O bits: displayFozm bits.
ColozDevice new displayForm: displayform onFrameBufferAt:

aRectangle origin!
setMaplindex

| bits pat bitsPerPixel index!|
bitsPerPixel _ ColorDevice bitsPerPixel.
index _ self mapIndex.

pat _ index.

5,073,392
193 194

(16 // bitsPerPixel) - 1 timesRepeat: [pat _ (pat bitShife:
bitsPerPixel) + index].
bits _ dispForm bits.

1 to: bits size do: [:i | bits at: { put: pat]! !
!SLCCcloredRectangle methodsFor: 'accessing'!

mapIndex
“return the value of maplIndex.
For a description of this instance variable, see the commen:

in the accessing method 'mapIndex:'."
“maplndex!

maplndex: aFarameter
"set the value of maplIndex.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
maplndex _ aParamster! !
'SLCColoredRectangle methodsFor: 'releasing'!

release

mapIndex _ nil.

super release! !
SLObject subclass: #SLCCclorCalibration

instanceVariableNames: ‘'

classVariableNames: 'BlueGammaTable BX BY BZ GreenGammaTatle GX 3Y
GZ RedGarmaTable RX RY RZ Xb Xg Xr Yb Yg Yr Zb Zg 2r

peollictionaries: ''

category: 'Color-Interface'!

tSCCeolorCalibration methodsfFor: 'gun computation'!

computeGunsFrom: aColorTriplet

| etXY¥Z ct¥xy guns er eg eb x y z |
ctXY¥Z _ aColorTriplet aaXYZ.
x _ ctXYZ X.

5,073,392
195 196
Yy _ etX¥Yz Y.

z _ ectXYZ 2.

ct¥xy _ ctXYZ asYxy.

guns _ SLRGBGunsColer new.

{ct¥xy producable) ifFalse:{guns redGun:0;greenGun:0;blueGun:C. “guns;.
“compute using inverted matrix, er,eg,eb"

er _ (((x)*{2.167))+((y)*(=0.937))+((2)*(=0.344)))/(70.692).

8 _ (({x)*(=1.264))+{(y)*(2.228))+((2)*(0.066)))/(97.47S).

eb _ (((x)=(0.097))+((y)*(=0.288))+((2)*(1.278)))/(117.234).
((ex > 1) (eg>1) |'{ab>1))ifTrue: (er_eg_eb_0).

"compute using gamma correction, redgun, greengun and bluegun"
"Note that the gamma correction tables are set up for 0 to 255 gun
values and that the primitive Smalltalk access is 0-65538"

guns redGun: ((self redGunCf: er)*256).

guns greenGun: ((self greenGunof: eg)*256).

guns blueGun: ((self blueGunof: eb)*256).

“guns!

o LdCompereSe=TIon: (TolorTriplet
| etXY¥Z ctixy guns er eg eb |

ctX¥Z _ aColorTriplet asxyZz.

ct¥xy _ ctXYZ as¥xy.

(ct¥xy producable) iffalse:("nil].

guns _ SLRGBGunsColor new.

"sompute using inverted matrix, er,eg,eb"

er _ (({ctX¥Z X)*(self rX))+((ctX¥YZ Y)*(self r¥))+((ctX¥2Z Z)*(sel:
t2)))/ (self capNz).

eg _ ({(ceXY¥2Z X)*(self gX))+((ctXYZ Y)*(self g¥))+ ((ctX¥Z Z)~* (selZ
g2)))/ (self capNg).

eb _ (((ectXYZ X)*(self DX))+((ctXYZ Y)*(self bY))+((ctX¥2Z 2Z)*(self
bZ))})/ (self capNDb).

({ez > 1) | leg>l) | {eb>]1))} ifTrue: (er_eqg_eb_01].

"compute using gamma correction, :cdquﬁ. greengun and bluegun”
*Note that the gamma correction tables are set up for 0 to 255 gun
values and that the primitive Smalltalk access is 0-655%35"

guns redGun: {(self redGunOf: er)*256).

guns greenGun: ((self greenGunOf: eg)*256).

guns blueGun: ((self blueGunoOf: eb)*256).

“guns! !

5,073,392
197 198

!SLCColozrCalibration methodsFor: 'gamma cocrection'!

blueGarmaTable
“self species blueGarmmaTable!

blueGunOf: aflocat
| gunval num

“This method retuzns the blue gun valus given the relative

excitation function

value aFloat.”
(aFloat > 1.0)ifTzue:[aum _ 1.0)ifFalas: oun _ afleasl.

gunvVal _ self interpolaterorY: num on: BlueGammaTable.

(gqunvVal isNil)ifTrue:{"0)ifFalse:[“gunVal]!

greenGammaTable
~self species greenGammaTable!

greenGunOf: aflcat
"This method returns the green gun value given the relative
excitation function

value afFlcat.”

! gunval |
aFloat > 1.0
ifT7zue: [~0]
iffalse:
{gunval _ self interpcolateForY: aFloat on:
GreenGammaTable.
gunVal isNil
ifTzrue: ["0)
ifFalse: {“gunval]]!

interpolateFforY: aFloat on: anOrderedCollection
| gt lo hi rzatio val num |
gt _ anOrderedCollection.

lo _ nil.

5,073,392
190 . 200
aFloat < 0

ifTrue: [num _ 0]
ifFalse: (aFlcat > 1.0
ifTrue: (num _ 1.0]
ifFfalse: [num _ aFlecat]].
hi _ nil.
"Here, hi being nil signals we haven't found the bracket. This
makes the do: _
sxecuticn very short once we've found the bracketing points. We

look at the
current point. If it's not the upper bracketing point, it may ke

the lower point

so we put it inte lo."

gt. do: {:thisElement | hi isNil ifTrue: (thisElement y >= aFl.oat

’ ifTzue: (hi _ thisElement)
ifralse: (lo _ thisElement]]].

*If the first element's y value was less than the input value, we
recurn a gun

value of nil”

lo iaNil ifTrue: [“nil].

"Now lo contains the element with an y less than the input value
and hi, the)

elemant above it in y value”

(hi isNil)ifTrue:({val_loc x]ifFalse:(ratic _ aFlcat - loy / (hi y
-loy.

val _ lo x + (ratio ~ {(hi x - lo x))].

“val!

redGammaTable

~self species redGammaTable!

:odGunO!:'arlaa:
! gunvVal num |
"This method returns the red gun value given the relative
excitation function
value aFloat.”
aflocat > 1.0
i£True: [num _ 1.0]
ifFalse: [arlcat < 0
ifTrue: [num _ 0]

ifralse: (num _ aFloat]}.

5,073,392
201 202

gunVal _ self intespolateFor¥: aFloat on: RedGammaTable.
guavVal isNil

ifTrue: (~0]

ifFalse: {“gunVaij! !

1§LCCslorCalibrarion methodsfor: 'phoschor chrsmaticziciss'!

bX
*7his is the blue phosphor contrzibution for 2 £
inch SuperMac display obtained by inverting the chromacti

~ 0.097!

“This is the blue phesghcer contzibution £3r ¥ for the IXZIGAMI

- - e

wr

inch SurerMac display obtained by inverting the chromazicicy matzix.”
~ =0.,288!

nemw

This is the blue phosphor contzibution for 2 oz the IXITaMI

W)

incs SuperMac display obtained by inverting the chromaticity maszziz."

~ 1.278!¢

gX
"This is the green phosphor contzibuticon for X for the IX=ZaMI 18

inch SuperMac display obtained by inverting the chromaticity matzixk.”
~ -1,264!

*This is the green phosphor contzibutiocn for ¥ for the IXZ3IAMI 12
inch SuperMac display obtained by iaverting the chrzomacicity matzix."

~ 2.225!

g2 .
"This is the green phosphor contribuzion for Z for the IXZGaMI 13

inch SuperMac display obtained by inverting the chzomaticity matzix.®
~ 0.066!

wThis iz the recd ghosph sz X f£orz the IXIGaMI L3

c
inen SuperMac display cobtained by inverting the chrzsmaticity matzix.”

~ 2.167!

203

5,073,392
204

$ 34
rThis is the red phosphor contrzibutisn fsz ¥ £or the IXEZAMI 12
inch SuperMac cdisplay obtained oy inverzing =he chssmatizizy maszuix.”
~ -Q.937!
rl

»This is the red phosphor contzibution £or 2 £oo the IXIZAMI &

ingch SupezMac display cbtained by inverzing the chosmatic

~ =0.344!

xb

"This is the x value of
SuperMac display"

~ 0.182!

xg

»This is the x value of
SuperMac display”

~ 0.280!

mThis is the x value of
SuperMac display"”
~ 0.618!

yb

*This is the y value of
SupezMac dispiay"

~ 0.063!

29

"This is the y value of
SuperMac display"®
-~ 0.608!

yr

"This is the y value of
SuperMac display"®

~ 0.350!

1Ty matsix.”
the blue phosphor for the IXIGAMI L& inzn

the green phosphor fcor the IXISAMI L3

the red phosphor £2z the IXIZAMI 1% inzo

——ewas

the blue phcsphor for the IXIZAMI

the green phosphor £sr the IKZI3ZAMI .3

the red phosphor for the IKZGAMI 13 3

5,073,392

205 206
zb

"This is the z value of the blue phosphor for the IKEGAMI 1§ inch
SuperMac display”®
~ 0.785!

29

"This is the z value of the green phosphor for the IKEGAMI .3 inch
SuperMac display”

~ 0.118!

zr
"This is the z value ¢of the red phosphor for the IKEGAMI 13§ incn
SuperMac display”
4 0.032! !

'SLCColerCalibration methodsFor: ‘qgun normalization factors'!

caphNb
"This returns the blue gun normalization"
"~ 124.335*2 from blue tile"

~117.234 "from white is all guns high"!

capNg
"Ihis SOLEInS Lhe Ganee 4w nowmalisetien”
"~ 70.816*2 from blue tile"

*57.478 "from white is all on hi™!

capNz
"This returns the red gun normalization"
** 35.685%*2 <from blue tile"

~70.692 "from white is all on hi"!

"This returns the overall normalization"
~ 225!

"7This returns the blue gqun normalizatien"
~ 0.42236!

5,073,392
207 208
ng
*This rezuzns the green gun normalization”

~ 0.19689!

nc
"This retuzns the red gun normalization”
~ 0.38078! !

P o o= mm cw e e ee mm ce e e .- w- - we o= = 1)

SLCColorCalibration class

instanceVariableNames: ‘''!

tSLCCelorCalibration class methodsFor: 'gamma table setup'!

setupBlueGamma

I gt top |
gt _ OrcderzredCcllection new: 27.

"collection is ordered in ascending relative excitation valzes”

“top is the photometric reading at gun value 255"

"the gamma correctiocn is stored as a set of (gun@excitazicn -

points”

top _ 1049.

gt add: 0 @ (260 / top).
gt add: 10 @ (261 / cop!.
gt add: 20 @ (262 / top).
gt add: 30 @ (2868 / top).
gt add: 40 @ (278 / tep).
gt add: 50 @ (290 / top).
gt add: €0 @ (307 / tep).
gt add: 70 @ (323 / top).
gt add: 80 @ (345 / top).
gt add: 90 @ (368 / top).
gt add: 100 @ (3%2 / top).
gt add: 110 @ (422 / top).
gt add: 120 @ (452 / top).
gt add: 130 @ (489 / top).
gt add: 140 @ (521 / top).
gt add: 1S0 @ (558 / top).
gt add: 160 @ (585 / top).

I B i B B B B

add:
add:
add:
add:
add:
add:
add:
add:
add:
add:

170
180
190
200
210
220
230
240
250
255

209

@ (635 / top).
@ (678 / zop).
@ (720 / top).
@ (765 / tep).
@ (818 / top).
@ (865 / top).
@ (909 / top).
@ (965 / top).
@ (1015 / tep).
@ (top / top).

BlueGammaTable _ gt!

setupGreenGamna

"1 gt top |
gt _ OrderedCillection new: 27,

5,073,392

210

“"ccllection is cordered in ascending relative excitatizn values®

"top is the photomerric reading at gun value 255"

"the gamma correction is stored as a set of

pointas”

top _ 2227.

gt
gt
gt

99499999994999494a49g49g4ga4a

add:
add:
add:
add:
add:
add:
add:
add:
add:
add:
add:
add:
add:
adad:
add:
add:
add:
add:
add:
add:

e e
11
16
30
40
S0
60
70
80
90
10¢
110
120
130
140
150
160
170
180
190

@ @ & 0 M M B ® @

(683 / top).

o e M D @ ® » O ®

(684
(689
(696
(716
(738
{774
(809
(848
(900

NN NN N NN NN~

(948 / top).

(1002
(1063
(1130
(1193
(1261
(1334
{1418
(1499
(1586

top) .
top) .
top).
top) .
top).
top) .
top) .
tep).
top).

top).
tep).
top).
top).

top).
top).
top).
top).

/
/
/
/
/ top).
/
/
/
/

{gun@excitzazicn valie)

5,073,392

211 212
ge add: 200 @ (1667 / top).
gt add: 210 @ (1764 / top).
gt add: 220 @ (1856 / teop).
gt add: 230 @ (1939 / top).
gt add: 240 @ (2035 / top).
gt add: 250 Q@ (2146 / top).
gt add: 255 @ (top / top).

GreenGammaTable _ gt!

setupRedGarmma
| gt teop 1
g%t _ OrderedCollection new: 27.
"collection is ordered in ascending relative excitatiocon values”
"ecp is the photometric reading at gun value 255"

"the gamma correction is stored as a set of (gun@excitaz:on vaiue)

points”®

top _ 2672.

gt add: 0 @ (1139 / top).
gt add: 10 @ (1142 / tep).
gt add: 20 @ (1152 / top).
gt add: 30 @ (1168 / top).
gt add: 40 @ (1189 / top).
gt add: 50 @ (1216 / top).
gt add: 60 @ (1268 / top).
gt add: 70 @ (1314 / :op);
gt add: 80 @ (1367 / top).
gt add: 90 @ (14285 / top)..
gt add: 100 @ (1467 / top).
gt add: 110 @ (13520 / tep).
gt add: 120 @ (1592 / top).
gt add: 130 8 (1646 / top).
gt add: 140 @ (1705 / top).
gt add: 150 @ (1777 / top).
gt add: 160 @ (1843 / top).
gt add: 170 @ (1831 / top).
gt add: 180 & (2002 / top).
gt add: 190 @ (2094 / top).
gt add: 200 @ (2164 / top).
gt add: 210 @ (2249 / top).

5,073,392
213
gt add: 220 @ (2344 / wop).

gt add: 230 @ (2422 / top).
gt add: 240 @ (2507 / tzep).
gt add: 250 @ (2625 / top).
gt add: 255 @ (top / top).
RedGammaTable _ gt! !

'SLCColozCalibration class methodsFor: 'class initializazi

initialize
self setupRedGarma.
self setupBlueGanma.

self setupGreenGamma.!'! !
tSLCColorCalibration class methodsFor: ‘accessing'!

blueGammaTable

“BlueGammaTable!

greenGammaTable

“GreenGammaTable!

redGammaTable

“RedGammaTable! !

SilCCoclorCalibration initialize!

SLObject subclass: #SLCMaplIndex
instanceVar;ableNamcs: tindex
classVariableNames: ''
peolDicticnaries: '

category: 'Ceolor-Interface'!'

tSLCMapIndex methodsFor: 'accessing'!

index
"return the value of index.
For a description of this instance variable, see the

in the accessing method 'index:'."

214

~e 1}
wesr .

conment

5,073,392
215 216

“index!

index: aParameter
"set the value of index.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
index _ aParameter!

maplndex
“zreturn the value of index.
For a description of this instance variable, sees the ccmment

in the accessing mathod ‘index:'."

~index! !

Below is the listing for file 'Color Spaces.st' in standazd

fileIn/fileQuts formac:

SLColozTriplet subclass: #SLFMCIIColor
instanceVariableNames: ''
classVariableNames: '!'
poolDictionaries: ''

category: 'Color Spaces'!

!SLFMCIIColor methodsFor: 'color space accessing'!
colerSpace
*return a symbol denoting my color space"

“#FMCII! !

SLColorTriplet subclass: $#SLXYZColoer
instanceVariableNames: '’
classVariableNames: "'
poolDictionaries: '

category: 'Coler Spaces'!

5,073,392
217 218

'SLXY2Color methodsFor: 'value range accessing'!

valuelRange

"return the range for value 1"
~0 ro: 120!

value2Range

“return the range for value 2"
% to: 120!

valueldRange

"return the range for value 3"
~0 =e: 120! !
181XY2Color methodsPor: 'conversion'!

asCILLAB

"From Garzdner colorimeter manual”
I ¢ er¥ c¢X ¢ |

€ _ SLCIELABColor new.

cr¥ _ (self Y 1n * (1 / 3)) exp.

erX _ ((1.02 * self X) ln * (1 / 3)) exp.
csZ _ ((0.8467 * self 2) ln * (1 / '3)) exp.
C elStar: 24.99 * cr¥y - 16,

c aStar: 107.7 * (czX - crY).

¢ bStar: 43.05 * (cr¥ - cx2).

et

aslabHunter
| ¢ sy |
€ _ SLlabHunterColor new.

sy _ ((self Y)sqgre).

¢ L: (1.0 * sy).
¢ a: ({((1.02 = (self X))~-{self Y))*(17.5/sy)).
e b: (((self Y)~(0.8467%(self 2)))*(7.0/8y)).

5,073,392
219 220

asXYyz

~self!

asyxy

| n¥xy total |

n¥xy _ SLYxyColor new.

n¥xy Y: self Y.

total _ self X + self Y + self 2.

(total = 0)ifFfalse:(n¥xy x: self X / total.

nYxy y: self Y / total)lifTrue: (n¥xy x: 0.n¥xy y: 9].
“nYxy! !

!1SLXY2Color methodsFoz: 'accessing'!
"returns the value of X for this triplet”
~ self valuel!

X: aFloat
"sets the value of X for zhis triplet”

self valuel: afFloat.!

[24

"returns the value of Y for this tziplet"

~ self valuel!

Y: aFloat
“sets the value of Y for this triplet”

self valuel: aFloat.!

"returns the value of 2 for this triplet”

~ self valueld!

Z: aFloat
"sets the value of 2 for this triplet®

self valueld: afloat.! !

5,073,392
221 222

'SLXY2Color methodsFor: 'color space accessing'!
colorSpace
"return a symbol denoting my color space"
~#XY2!
colozrSpacelabels
| cs 1
“return a collection of labels for displaying my color scace

variables"

cs _ OrderedCollection new: 3.
cs add: ¥X.

cs add: #Y.
cs add: ¢#2.
~cs! !

SlColorTriplet subclass: ¥SLRGBGunsColor

instanceVariableNames: '‘

classVariableNames: '

poollictionaries: '!'

category: 'Color Spaces'!
SLRGBGunsColor comment:
tt'This class represents the color space of the monitcr''s gun val.ues.
These values are commonly called red green and blue and those terms a:ce
used here. All color spaces must respond to cdnve:sion messages zhat

result in gun values to be displayed.'''!
'SLRGBGunsCclor methedsFor: 'color space accessing'!
colorSpace

| cs |

"return a symbol dencting my color space.

I am the red, green and blue monitor gun values."

~#RGBGuns!

5,073,392
223 224

colorSpacelabels
i es |
"return a OrdaredCollection of three strings denoting my caolo:s
space.
I am the zed, green and blue monitor gqun values."
€3 _ CrdaredCollection new: 3.
cs add: #Rg.
cs add: $Ggq.
cs add: #Bg.

~cs! !

!SLRGBGunsCelor methodsfozr: 'value range accessing'!

valueiRanqe

"return the range for value 17
~0 to: 65535!

valuelRange

"return the range for value 2"
~Q to: 65535!

valueliRange

"return the range for value 3"
fo to: 65535! !
'SLRGBGunsCclor methedsFor: 'accessing'!
blueGun
~self value3l!
blueGun: anlnteger
self valueld: aninteger!
greenGun

~self valuel!

5,073,392
225

gresnGun: anInteger
self valuel: aninteger!

redGun

~self valuel!
redGun: anInteger

self valuel: anlInteger!' !

"-- - - - - - - - - - - - - - - o - - - - - - - - - - - an

SLRGBGunsColor class

instanceVariableNames: '‘!

'SLRGBGunsColor class methodsFer: 'instance creation'!'

R: redPercent G: greenPercent B: bluePercent
I zgb |

"create and return a new instance of me"

rgh _ self new.

rgb percentRed: redPezcent.

tgb percentGreen: greenPercent,

rgb percentBlue: bluePercent.

- ~rgb! !)

SLColorTriplet subclass: #SLCIELUVColor
instanceVariableNames: ''
classVariableNames: '!

poolDictionaries: !

category: 'Color Spaces'!
'SLCIELUVColor methodsFor: 'color space accessing'!
colorSpace

“return a symbol denoting my color space"

“#CIELUV! !

!

226

5,073,392
227 _ 228
SLCclorTriplet subclass: #SLCIELABColor

instancevariablahNames: '’
classVariableNames: ‘'*
poolDicticnaries: '’

category: 'Color Spaces'!

'SLCIELABCOlor methodsPFor: 'conversion'!

asCIELAB

“self! !
'SLCIELABColor methodsFor: 'color space accessing'!
colozSpace

"return a_symbol dencoting my color space"
“¢CIELAB! !
'SLCIELABColor methodsFor: ‘accessing'!

astar

~ value2!

aStar: afloat

self value2: (aFloatz)!

bStaz

~ valueld!

bStar: aflcat

self valueld: (aFloat)!
elStacrz

~ valuel!

elStar: afFlca:

self valuel: (aFlocat)! !

5,073,392

229 _ 230
SlColoxTriplet subclass: #SLYxyColor

instancevVariableNames: '
classVariableNames: ''
poclDictiocnaries: '!'

categery: 'Coleor Spaces'!

!Sl¥xyColor methodsFecr: 'value range accessing'!

valuelRange

"return the range for value 1"
~0 to: 100!

valuelRange

"zeturn the range for value 2"

value3Range

“return the range for value 3"
~Q0 to: 1.0! !

!SLY¥xyColor methodsFor: 'conversion''

asxXya
el
¢ _ SLXYZCoclor new.
self y =0
ifTrue:
[e X: 0.
c Z: 0)
ifFalse:
(c X: self x * self Y/ self y.
€ Z: ((self ¥ / self y) * (1.0 - self x - self y))!}.
¢ ¥Y: self ¥
asyxy

5,073,392
231 232

tSLYxyColor methodsFor: 'accessing'!

x

~self value2!

x: aFloat

~self valueld: afFloat!

Y

~self valuel!

Y
~self valuel!

y: aFloat

~self valueld: aFloat!

Y: aFloat

~self valuel: aFloat! !
'SLYxyColor methodsFor: 'testing'!

producable
‘ "This tests the x and y values for inclusion within the gamu: I
the monitor
phesphors.”
"The algorithm is based on testing for the X,y point in guesticn
being above or
belcw the lines cconnecting the phcspho: chromaticicy pcints. The
test answers
Trzue if the x,y point in question lies inside or on the edge =2
" the triangle, False
otherwise."
"These must be examined for validity of 'above' and 'below'
cdecisions for each

new CRT phosphor set”

| cal slopebg slopegr slopebr blkbg blkgr blkbr abovebg aboveg:

belowbr cutside inside |

5,073,392
233 234

cal _ SLCColorCalibration new.
\

“Here we calculate the slopes of the three lines connecting :the
chromaticity

points for the phosphors.”

slopebg _ cal yg - cal yb / (cal xg - cal xb).

slopegr _ cal yr - cal yg / (cal xr - cal xg).

slopebr _ cal yr - cal yb / (cal xr - cal xb).

"Here we set up line equations in blocks for evaluation®
blkbg _ (:x | slopebg * (x = cal xb) + cal yb].
blkgr _ (:x | slopegr * (x - cal xg) + cal yg].
blkbr _ [:x | slopebr * (x - cal xb) + cal yb].

"Note that the twe sets of values/blocks above should eventually

be made

instance vaciables of the colorcalibration.”

"Here we evaluate the point's positions relative to the lines
uWAing She Dieoks . -
abovebg _ self y > (blkkg value: self x).
abovegr _ self y > (blkgr value: self x).
belowbr _ self y < (blkbr value: self x).
cutside _ abovebg | abovegr ! belowbr.
izside _ outside not.

“inside! !
'SLYxyColor methodsFor: 'color space accessing'!
coclorSpace

"zreturn a symbol dencoting my color space"
“¢Y¥xy!
cclerSpacelabels

| cs |

"retuzn a collection of labels for displaying my coler space

variables”

5,073,392
235 236

cs _ OrderedCollection new: 3.

cs add: #Y.

cs add: #x.

cs add: #y.

“es! !

SLColorTriplet subclass: #SLlabKunterColor
instanceVariableNames: ''
classVariableNames: '
poolDicticonaries: '!

category: 'Color Spaces'!

'SLLabHunterCoclor methodsFor: ‘conversicn’'!

aslLabHunter

“return a new color triplet converted T2 Lab Hunter coordinatces”

~“self!

asxyz
| newColor !
"convert to the XYZ system"
newColor __ SLXYZColor new.

newColor X: (((self L)/100)*((0.5602*(self a)) + (0.9804*(se.*
L.

newColor ¥Y: ((self L)*(self L))/100.
newColor Z: (((self L)/59.27)*((0.7*(self L))~-(self b))).
~ newColorz! !

!SLLabHunterColor mathodsFor: 'coler space accessing'!

cclorSpace

"return a symbol denoting my coler space”

‘tLabﬂuntq:!

h-1-3 8 Ivels

Il es |

5,073,392
237 238

"return a collection of labels for displaying my cslsr space

variables”

cs _ OrderedCcllection new: 3.
cs add: #Lh.
cs add: #ah.
cs add: #bh.

~cs! !

'SLLabHunterColor methcdsFor: 'accessing'!

"return the value of a.
- result is expected to be of the class Floar.
This variable is used o hold the a value of a Hunter Lab colics

space triplet.”
“self valuel!

a: afFloat
"set the value of a.
aFloat is expected to be of the class Float.
This variable is used to hcid the a value of a Hunter Lab csl:c:s

space triplet. This value ranges from -60 to +60."

self valuel: afloat!

"return the value of b.
result is expected to be of the class Float.
This variable is used to hold the b value of a Hunter lLab coslor

space triplet.”

~self valueld!

p: aFloat
"set the value of b.
aFlcaz is expected to be of the class Float.
~wis variable is used to hold the b value of a Huntexr laz cciz:

space triplet. This value ranges from -60 to +60."

5,073,392
239 240

self valueld: aFlcat!

“return the value of L.
zesult is expected to be of the class Float.
This variable is used to hold the L value of a Hunter lab color

space triplet.”

~self valuel!

L: aFlecat
"set the value of a.
aFlcat i1s expected o be of the class Floact.

This variable is used o held the L value ¢f a Hunter lLab 2

- -
-~ -

[§]

space triplet. This value ranges from =60 to +60."
self valuel: aFloat! !
'SLLabHunterColor mathodsFor: 'value range accessing'!

valuclnnnqi

"return the range for value 1"
~0 to: 100!

valueZRange

"zeturn the range for value 2"

~=-60 to: 60!

valuedRange

"return the range for value 3"

*-60 to: 60! !

SLLabHunterColor subclass: #SLlabHunterRColor
instanceVariableNames: ''
ciassVariableNames: ''
poolDictionaries: ''

category: 'Cclor Spaces'!

5,073,392

241

!SiLlabHunterRColor methodsFor: 'value range accessing'!

valuelRange

“return the range for value 1"

~30 to: 90!

valueZRange

“return the range for value 2"

=15 zo: 135!

va;uQBRanqc

"return the range for value 3"

“0 ze: 30! !

Below is the listing for file 'SiColozTripletBrowser.st’

fileIn/fileQut format:

SLOkbject subclass: #SlLColorTripletBrowser
instancevVariableNames: 'colorTriplet
classVariableNamesa: ''

e

poollictionaries:

catesgory: 'Seelap Data Browsers'!

'SLi0lozTripletBrowser methodsFor: 'updating'!

update: aSymbol

*handle updates”

(aSymbol = #valuel) ifTrue:[self changed:

#éguns].
(aSymbol = #valuel) ifTrue:(self changed:

égquns].

(aSymbol = #valueld) ifTrue:[self changed: #valuel. self

4guns].

#valuel.

fvaluel.

(aSymbol = #updateAll) ifTrue:{ self changed: #valuel.

self changed: #value2.
self changed: #valuel.

self changed: #guns].

242

in s=angdazd

changed:

cranged:

changed:

5,073,392

243 | 244

super update: aSymbol! !
'SLColorTripletBrowser methodsFor: 'indirect accessing'!

valuel

"get valuel from my colorTriplet"®

“sell colaclniplar valeel!

valuel: aNumber
"set valuel in my colorTrziplet™
"This is sent when the gauge is jerked around"

self colorTriplet valuel: ((aNumber * 100) truncated / 120)

valuelRange

"get the range for valuel from my cclorTriplez”
~self colorTriplet valuelRange!

valuel

"ger value2 from my colorTriplet”
~self colerTriplet valuel!

value2: aNumber

"set value2 in my coleorTriplet"
self colorTriplet valuel: ((aNumber * 100) truncated / 100)

value2Range

"get the range for value2 from my colezTriplet™
~self colorTriplet valuelRange!

valueld

*“get valueld from my colorzTriplet"

~self colorTriplet valueld!

asflcaz!

asfF_.cac:

5,073,392

245 246
value3: aNumber

"set valueld in my coleorTriplet™
self colorTriplet valueld: ((aNumber * 100) truncated / 100) asfFicaz:
value3Range

"get the range for valuel from my colorxTriples"
“self colorTziplet value3Range! !

!SLCalc:T:iple:Bréwse: methodsFor: 'scheduling'!

buildAndAssembleBrowser
| topView |

"build the subviews and arrange them in a SSV for scheduling®

tepView _ StandardSystemView
model: self
label: 'Cclor Triplet Browser'
minimumSize: 250 @ 70.

topView borderWidth: 1.

ccpView

addSubView:

(LabelView label: (colorTriplet colorSpacelabels at:

'

in: (0 @ 0 extent: (1 / 3) @ (1 / 4))
borderWideh: 1.

topView
addSubView: self valuelDigitGauge
in: (0 @ (1/4) extent: (5 / 21) @ (3/4))
borderWideh: 1.

topView
addSubView: self valuelBarGauge

in: ((5/21) @ (1/4) extent: (2 / 21) @ (3/4))
bordezrWwidth: 1.

5,073,392
247 248

topView
addSubvView:

(LabelView label: (colorTriplet sclorSpacelabels as:

2)1
in: ({(1/3) @ 0 extenz: (1 / 3) @ (1 /7 4))
borderwidth: 1.
topView
addSubView: self value2DigizGauge
in: ((1/3) @ (1/4) extent: (5 / 21) @ (3/4))
borderWideh: 1,
topView
addSubView: self valuelBarGauge
in: ((12/21) @ (1/4) extent: (2 / 21) @ (3/4))
bordesWideh: 1.
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelarels az:
3))
-in: ((2/3) @ 0 extenz: (1 / 3) @ (1 / 4))
bordezWideth: 1. A
topView
addSubView: self value3DigizGauge
in: ((2/3) @ (1/4) extent: (5 / 21) % (3/4))
borderWidth: 1. ’
topView
addSubView: self valuelBarGauge
in: ((19/21) @ (1/4) extenct: (2/21) @ (3/4))
bozrderWidth: 1.
“topView!

buildAndAssembleBrowserForIinsertion
aview .

Whayy o

Suild the subviews and arrange them in a view £or inserziant

5,073,392
249 , 250

aView _ View new model: self.

aView borderWideh: 1.

aView
addSubview:' LabelView label: (self colorTriplet
colorSpacelabels at:l))
in; (0 Q@ 0 extent: (1 / 3) @ (1 / 4))

borderWideh: 1.

aview B
addSubView: self valuelDigizGauge
in: (0 3 (1/4) extent: (5 / 21) @ (3/4))

bozderwideh: 1.

aView
addSubView: self valuelBarGauge
in: ((5/21) @ (1/4) extent: (2 / 21) @ (3/4))
bordesWidth: 1.

aView
addSubView: (LabelView label: (self cclorTriplet
colorSpacelabels at:2))
in: ((1/3) @ 0 extent: (1 / 3) @ (1 / 4))
borderwideh: 1.

aView
addSubView: self value2DigitGauge
in: ((1/3) @ (1/4) extent: (5 / 21) @ (3/4)
bozderWidth: 1.
aView
addSubView: self valuelBarGauge
far ((12/21) @ (1/4) exzent: (2 / 21} @ (3/4))

borderWideth: 1.

avView
addSubView: (LabelView label: (self cclozTriclez
colorSpacelabels at:3))
int ((2/3) @ 0 extent: (1 / 3) & (1 / 4))

borderWideth: 1.

5,073,392
251 252
aView

addsubView: self value3DigitGauge
in: ((2/3) @ (1/4) extent: (5 / 21) @ (3/4))
borderWidth: 1.

aView
addSubView: self value3BarGauge

in: ((19/21) @ (1/4) extent: (2/21) @ (3/4))
bordezrWidth: 1.

“aView! !

'SLColorzTripletBrowser mathodsFor: 'subview creation'!

valuelBarGauge
~BarGaugeView
on: self
aspect: #valuel
change: #valuel:
range: self valuelRange
orientation: #vertical
<yPe: Yoar
needleDirection: nil!
valuelDigitGauge
~DigitGaugevView
on: self
aspect: #valuel
change: #valuel:
range: self valuelRange!
valuelBarGauge
“BarGaugeView

on: self

aspect: #value2

change: #valuel:

range: self valuelRange
orientation: #vertical
type: #bar

needleDirection: nil!

5,073,392

: 253 254
valuelDigitGauge
“CigitGaugevView
on: self
aspect: #value2
change: #valuel:
range: self valuelRange!
value3BarGauge
“BarGaugeView
on: self
aspect: #valued
changs: #value3:
range: self valuelRange
orientation: #vertical
type: #bar
needleDirection: nil!
value3DigitGauge
“DigitGaugeView

on: self
aspect: #valueld
change: #valuel:

range: self value3Range! !
'SLColorTripletBrowser methodsFor: 'release’!
release
"do scme clean up”
colorTriplet removelDependent: self.
colorTriplet _ nil.

super release.!

removeDependent: anObjece

"intercept Ehis message to clean up”
self release.

super remcveDependent: anObject! !

5,073,392
255 256

"SLColorTripletBrowser methodsFor: 'accessing'!

colozxTriplet
“return the value of colorTriplet.
For a description of this instance variable, see the ccrmmen:

in the accessing method 'colorTriplet:'."
“colorTriplet!
colorTriplet: anSlColorTriplet

| oldColozTriplet |

"set the value of colorTriplet.

O

anSLColorTriplet is expected to be a subclass of SLC
This instance variable is used %5 hold =he calor zziplet teing

browsed."
cldCelorTriplet _ coicrlriplet.
colorTripiet _ anSlLColorTriplect.

oldColorTripler isNil ifFalse:{cldCoclozTriplet removeDependent: self;.

colorTriplet addlependent: self.! !

eo we ce ee ce - te = we = e em o= - m- oo w= aa !

SLCclozrTripletBrowser class

instancevVariableNames: ''!

'SlColozrTripletBrowser class methodsFor: 'instance creation'!

on: anSlColorTriplet
! ectbh |

cem~

“create and return a new instance of me on an3LColorTriplez

ctb _ self new.
cth colorTriplet: anSlColerTriplet.

=2-K

5,073,392
257 258
openOn: anSlColorTriplet

"create and schedule a new instance cf me on anSLColczTziglet”
"SLColorTriplecBrowser openOn: (SLCIELABCOlor new).™

"SlColorTripletBrowser openlOn: (SLRGBGunsColor new)."

Il etb |
ctb _ self on: anSLColorTriplet.
cth buildAndAssembleBrowser controller cpen! !
Below is the listing for file 'Color Science Tccls.st' in szandaczd

sileln/fileQue formac:

S.lkfecz subclass: #5LCGaugedPacch

instanceVariableNames: 'experiment ivvValues zroiplet z2sc<
calibration device gunTriplet regression '

classVariableNames: ''

poolbictionaries: '

category: 'Color Science Tools'!

‘SLCGaugedrPatch methodsFor: 'value range accessing'!

valuelRange
| iv top
iv _ self variables at: 1.
top _ iv max,
{(tep > 10000) ifTrue: (top _ 10000].

“iv min zo: teop!

valuelRange
| iv top |
iv _ self variables at: 2.
<0p _ iv max.
({cop > 10000) ifTrue: (tcp _ 13000].

~iv min to: top!

value3Range
| iv top |
iv _ self variables at: 3.

top _ iv max.

5,073,392
259 260

(tep > 10000) ifTrue: (top _ 10000].

“iv min to: top!

valued4Range

| iv top |

iv _ self variables at: 4.
tep _ iv max.

(top > 13000) ifTzue: {tep _ 130007,

“iv min to: top!

value3Range
| iv top |
iv _ self variables act: §.
top _ iv max.

{top > 10000) ifTrue: (top _ 10000].

“iv min to: top!

valueéRange
| iv tep |
iv _ self variables at: 6.

top _ iv max.

10000},

-

(zep > 10000) ifTrue: [top _

“iv min to: tep!

value7Range
i iv top |
iv _ self variables at: 7.
tep _ iv max, '
(top > 10000) ifTrue: (top _ 10000].

“iv min to: top!

1SLCGaugedPatch methodsFor: 'gauge value access'!

valuel
~ self ivValues at: 1!

valuel: aNumber
self ivValues at: 1 put: aNumber.

self changed: #valuel.

261
sslf refigureThings.!

valuel

~ self ivvalues at: 2!

valuel: aNumber

self ivvalues at: 2 put:

self changed: #value2.

self refigureThings.!

valuel

~ self ivvalues at: 3!

value3d: aNumber

self ivvalues at: 3 put:

self changed: #value3.

self refigureThings.!

valued

~ self ivValues at: 4!

value4: aNumber

self ivvalues at: 4 put:

self changed: #valued.
self refigureThings.!

value$

~ self ivvalues at: §!

value$S: aNumber
self ivValues at: S put
self changed: #value$.

sel? refigureThings.!

valueé

-~ self ivvValues at: 6!

<waluef: aNumber

self ivvalues at: § put:

5,073,392

aNumberz.

aNumbez.

aNumber.

: iNumbc:.

aNumber.

262

5,073,392
263 264

self changed: #valuef.

self refigureThings.!

value?

~ self ivValue ac: 7!

value7: aNumber
self ivValues az: 7 put: aNumber.
self changed: #value?,

self refigureThings.' !

'SLCGaugedPatch methedsFor: 'DigitGauge building®!

valuelDigitGauge
~“DigitGaugeView
on: self
aspect: #valuel
change: #valuel:
range: self valuelRange!
value2DigitGauge
“DigitGaugeView
on: self
aspect: #value2
change: #valuel:
range: self value2Range!
value3DigitGauge
“DigitGaugeView
on: self

aspect: #valuel

change: #value3:

range: self value3Range!

vaLued4DigitSauge
~2igitGaugeView
cn: self
aspect: #valued
change: #valued:

range: self value4Range!

5,073,392
265 266

valueSDigitGauge
“DigitGaugeView
on: self
aspect: #value$
change: #valueS:

range: self valueSRange!

valueéDigizGauge
“DigitGaugeView
on: self
aspect: #valueé
change: #values:

range: self valuefRange!

value7DigitGaugs
“DigitGaugeView
on: selt
aspect: #value?
change: #value?:

zange: self value7Range! !

!SLCGaugedPatch methodsFor: 'BarGauge building'!

valuelBazGauge

“BarGaugeView
en: self
aspect: #valuel
change: #valuel:
range: self valuelRange
orientatiocn: #vertical
type: #bar
needleDirecticn: nil!

value2BarGauge

“BarGaugeView

on: self
aspect: #valuel
change: #$valuel:

range: self valuelRange

5,073,392
267 268

orientation: #vertcical
type: #bar

needleDirection: nil!

value3BarGauge

“BarGaugeView
on: self
aspect: #valuel
change: #valuel:
range: self valuelRange
orientation: #verzical
type: #bar

nescleDireczion: nil!

valus4BarGauge
“BarGaugeView
on: self
aspect: #valued
change: #value4:
cuTge: YEIT valuedRange -

orientation: #vertical

type: #bar

needleDireczion: nil!

valueSBarGauge

“BarGaugeView
on: self
aspect: #value$
change: #value5:
range: self valueS5SRange
orientation: #vertical
type: #bar

neecdleDirection: nil!

va@ueSBa:Gauge
“BarGaugeView
on: self
aspect: #valuef
change: #valuef:

range: self valueéRange

5,073,392
269 | 270

orientation: #vertical
type: #bar

needleDirzection: nil!

value7BazGauge
“BarGaugeView
on: self

aspect: #value7

change: #value?:

range: self value7Range
orientaticn: #vertical
type: #bar

needleDirection: nil! !

| SillLdiigedbetoh aRTTTRYTOr: 'GaugeSet building'!

gaugeSetl

| gaugeSet |

gaugeSet _ View new model: self.

gaugeSet borderWidth: 1.

gaugeSet
-addSubView: (LabelView label: ((self variables at:l) name))
in: (0 @ 0 extent: (1) & (1 / 4))
bordezWideh: 1.

gaugeSet
addSubView: self valuelDigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderWidth: 1.

gaugesSet
addSubView: self valuelBarGauge
in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: l..

“gaugeSet!

gaugeSet2
| gaugeSet |
gaugeSet _ View new model: self.
gaugeSet borderwidth: 1.

5,073,392
271 272
gaugesSet)

addSubView: (LabelView label: ((self variables ac:2) name))
in: (0 @ 0 extent: (1) & (1 / 4))
bordezNidth: 1.

gaugeSet
addSubView: self value2DigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderWidth: 1.

gaugeSet

addSubView: selif valuel2BarGauge
in: (0 @ (1/2) extent: (1) @ (1/2))
bordezWidesh: 1.

“gaugeSec!

gaugesSet3
| gaugeSet |
{(self variables at:3) units) = 'ratio' ifTrue: ("~ self
ratiocGaugeld].
gaugeSet _ View new model: self,
gaugeSet borderwidth: 1.
gaugeSet
addSubView: (lLabelView label: ((self variables at:3) name))
in: (0 @ O extent: (1) @ (1 / 4))
borderWidth: 1.

gaugeSet
addSubView: self value3DigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderwideh: 1.

gaugeSet
addSubView: self value3BarGauge
in: (0 & (1/2) extent: (1) 8 (1/2))
bozrdexNideh: 1.

“gaugeSet!

gaugeSet4

3,073,392
273 274
- | gaugeSet |

{{self variables at:4) units) = ‘ratio' ifTrue: ("~ self
ratioGauged].
gaugeSet _ View new model: self.
gaugeSet borderWidth: 1.
gaugeSet
addSubView: (LabelView label: ((self variables at:4) name);

in: (0 @ 0 extenz: (1) @ (1 / 4))
borderWideh: 1.

gaugesSet
addSubView: self valuedDigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderwideh: 1.

gaugesSet
addSubView: self value4BarGauge
in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: 1.

“gaugesSet!

gaugeSetrS

| gaugeSet |

gaugeSet _ View new model: self.

gaugeSet borderWidth: l;

gaugeSet
addSubView: (LabelView label: ((self variables at:5) rnaze))
in: (0 @ 0 extent: (1) @ (1 / 4))
borderWidth: 1.

gaugesSet
addSubView: self valueS5DigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderWidth: 1.

gaugesSet
addSubView: self valueS5BarGauge
in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: 1.

A §

5,073,392
275 276

gaugesSet§

| gaugeSet |
gaugeSet _ View new model: self.

*

gaugeSet borderwidzh: 1.

gaugeSet:
addSubView: (LabelView label: ((self variables a%:6) name))

in: (0 @ 0 extent: (1) @ (1 / 4))
borderwideh: 1.

gaugesSet
addSubView: self valuefDigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))

bordezWideth: 1.

gaugesSet
addsubView: self valuefBarGauge

in: (0 @ (1/2) extent: (1) @ (1/2))
bordezWideh: 1.

“gaugeSet!

gaugesSet?
| gaugeSet |
gaugeSet _ View new model: self.
gaugeSet borderwWidth: 1.

gaugeSet
addSubView: (LabelView label: ((self variables at:7) name!)

in: (0 @ 0 extent: (1) @ (1 / &))
bordezMidth: 1.

gaugeSet
addSubView: self value7DigitGauge

in: (0 @ (1/4) extent: (1) @ (1/4))
borderWwidth: 1.

gaugeSet
addSubView: self value7BarGaugs

in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: 1.
“gaugeSet! !

5,073,392
277 278
'SLCGaugedPatch methodsFor: 'updating'!

refigureThings
"This is the response to the update: #color message."”
"Recompute the triplet with the new ivValues."
"Update the palette with that triplet.”
"Updating the cost using the new numbers is take care of with
update: #cosc.”

"I am using direct instance variable access here for speed.”

| codedValues |
codedValues _ OrderedCollection new.
1 to: self variables size do: [:n | ccdedValues add: (regress::zn
convertValue: (ivValues at: n)
‘ of: n)].

.triplet valuel: (regression calculateValue: 1 using: cadecValues).
triplet valuel: (regression calculateValue: 2 using: cocdedValues).
triplet valueld: (regression calculateValue: 3 using: cccedValues).
gunTriplet _ calibration computeGunsfrom: triplect.
device

setColorMapEntry: 3

toRedValue: gunTriplet valuel

greenValue: gunTriplet value2

bluevValue: gqunTriplet valuel.!

update: aSymbol
self halc,
aSymbol = #cost
ifTrue: [cost _ cost + 1]

ifFalse: [aSymbol = #color ifTrue: [self refigureThings))' !

'SLCGaugedPatch methodsFor: 'ratio gauge stuff'!

raticGaugeld

| gaugeSet |

gaugeSet _ View new mcdel: self,

gaugesSet bordezWiath: 1.

gaugeSet
addSubView: (LabelView label:'percent')
in: (0 @ 0 extent: (1) @ (1 / 8))
bordesWidth: 1. .

5,073,392
279 280

gaugeSet
addSubView:

in: (0 @(1/8) extent: (1) @ (1 / 8))

(LabelView label: ((self variables at:3) name))

borderWidth: 1.

"DIGIT GAUGES"

gaugesSer:
addSubView: self valuelADigitGauge

in: (0 @ (1/4) extent: (1/2) @ (1/8))
borderWidth: 1.

gaugeSet
addSubView: self value3BDigitGauge

in: ((1/2) @ (1/4) extent: (1/2) @ (1/8))
borderNideh: 1.

"BAR GAUGES"
gaugeSet
addSubView: self value3ABarGauge
in: (0 @ (3/8) extent: (1/2) @ (S/8))
" borderWidth: 1.

SANJASAL
addSubView: self value3BBarGauge

in: ((1/2) @ (3/8) extent: (1/2) @ (5/8))
.borderWidth: 1. '

“gaugeSet!

ratigGauged
"1 gaugeSet |

gaugeSet _ View new mocdel: self.

gaugeSec borderWidth: 1.

gaugeSet
addSubView: (LabelView label:'percent')
in: (0 @ 0 extent: (1) @ (1 / 8))

q

borderWwidth: 1.

gaugeSet
addSubView:

(LabelView label: ((self variables at:4) name))

5,073,392
281 282
in: (0 @(1/8) extent: (1) @ (1 / 8))

borderWidth: 1.

"DIGIT GAUGES"™

gaugeSet
addSubView: self valuedADigitGauge
in: (0 @ (1/4) extent: (1/2) @ (1/8))
borderWidth: 1.

gaugesSet
addSubvView: self value4BDigitGauge
in: ((1/2) @ (1/4) extent: (1/2) @ (1/8))
borderWidth: 1.

"BAR GAUGES"

gaugeSet
addSubView: self value4ABarGauge
in: (0 @ (3/8) extent: (1/2) @ (5/8))
borderWidth: 1.

gaugeSet
addSubvView: self value4BBarGauge
in: ((1/2) @ (3/8) extent: (1/2) @ (5/8))
borderWidth: 1.

~gaugeSet!
value3a
[
r _ self ivValues at: 3. "The ratio"

A(ror 100/ (1 + =)

value3A: aNumber
aNumber = 100
ifTrue: (self ivvalues at: 3 put: 99999%]
ifralse: (self ivvValues at: 3 put: (aNumber / (100 -
aNumber) asFloat)].
self changed: #value3A.
self changed: #valuelB.
self refigureThings!

5,073,392

283
value3ABarGauge
“BarGaugeView
on: self
aspect: #valuelda
change: #valuelA:
range: (0 to: 100)
orientation: #vertical
type: #bar
needleDirection: nil!
value3ADigitGauge
~DigitGaugeView
on: self

aupect dYvaiueds

change: #valuela:

range: (0 to: 100)!

valuels
| =1
r _ self ivValues at: 3., "The ratio"

“0(100) /(1 + =)

value3B: aNumber

(aNumber = Q)ifFalse:{self ivValues at: 3 put:

aNumber) /aNumber) asFloat)]
ifTrue: (self ivValues at: 3 put: 999999].
self changed: #valuela,
self changed: #value3s,
self refigureThings.!

value3BBarGauge

“BarGaugeView ‘
on: self

- aspect: #value3B

change: #value3lB:
range: {0 to: 100)
orientation: #vertical
type: #bar

needleDirection: nil!

284

(((100-~

5,073,392

285
value3BDigitGauge

“DigitGaugeView
on: self
aspect: #value3B
change: #valuelB:

range: (0 to: 100)!

valuedA

f =}

r _ self . ivValues at: 4. "The ratio"

Sz * 100)/(1 + o))

value4A: aNumber
aNumber = 100

ifTrue: {self ivValues at:

ifFalse: (self ivValues at:

aNumber) asFlcat)].
self changed: #valuedA.
self changed: #valhe4B.
self refigureThings!

value4ABarGauge
“BarGaugeView
on: self
aspect: #value4dA
change: #value4dA:
range: (0 to: 100}
orientation: #vertical
cype: é#bar
needleDirection: nil!
value4ADigitGauge
“DigitGaugeView
on: self

aspect: #valuedA
change: #valuedA:

range: (0 to: 100)!

value4B

4 put:

4 put:

9999991

(aNumber /

286

(130 -

5,073,392
287 288

[|
r _ self ivValues at: 4. "The ratio"

S0 /(1 + !

vaivedd: evedeT

(aNumber = Q)ifFalse:[self ivValues at: 4 put: (({100~-
aNumber) /aNumber) asFloat)]

ifTrue: (self ivValues at: 4 put: 5$599999].

self changed: #valueda.

self changed: #valuedB.

self refigureThings.!

value4iBBarGauge
~BarGaugeView
on: self
aspect: #valuedB
change: #valuedB:
range: (0 to: 100)
orientation: #vertical
type: #bar
needleDirection: nil!
value4BDigitGauge
“DigitGaugeView
on: self

aspect: #valuedB
change: #value4B:

range: (0 to: 100)! !
'SLCGaugedPatch methodsFor: 'bpildinq'!

buildAndAssembleBrowser

*"1'11 return a StandardSystem view. I'm called by openOn: in this
class”

"I have an experiment already."”

“INSTANCE VARIABLE SETUP"

"I need o set the ivValues to their center values"

| gaugePanel patchPased Jbl topliew-ewp <4v3 Th¥Iriplet

syrroundTriplet |

5,073,392
289 290

exp _ self experiment trajectory.
self ivValues: OrderedCollectiocon new.
ivs _ self ivValues.
1 to: exp variableDefinitions size do: [:a | ivs add: (exp
variableDefinitions at: n) center].
"I need to calculate the colorTriplet corresponding to those
ivvalues"
tziplet _ SLlabHunterColor new.
self refigureThings. "This is what 'update:#color' invokes"
"I need tq calculate the cost associated with that recipé"
cost _ 100. V
We=e= VIEW BUILDING -=="
"GAUGEZ PANEL"
gaugePanel _ self buildGaugePanel.
"PATCH PANEL"
patchPanel _ self buildPatchPanelWith: triplet.
"I need to set up the costPanel™
"I need to set up the descriptionPanel with the text descriptiocn
of the
experiment™
"TOP VIEW CREATION"
lbl _ self experiment trajectory name, ' 3:4°'.
topView _ StandardSystemView
model: self
label: lbl
minimumSize: 250 @ 70.
topView-cacheRefreah: false.
topView borderwWwidth: 1.
"TOPVIEW ASSEMBLY"
topView
addSubView: gaugepadel
in: (0 @ 0 extent: 1 @8 (1 / 2))
borderwidth: 1. -
topView - _
ITTESTVien: pavePaTel

in: (0 @ (1 /7 2) extent: 1 @ (1 / 2))
borderWidth: 1.
"I will return the tdeiew"

~topView!

5,073,392
291 292

buildGaugePanel
"This returns a GaugePanel ready for insertion into the topView."

"Figure out how many gauges"

| cat fraction panel |
cnt _ self experiment trajectory variableDefinitions size.
ent > 7 ifTrue: (self error: 'I can only handle a maximum of 7
variables!!'].
"Calculate how wide each one is"
fraction _. 1 / cnt,
"Create the panel™
panel _ View new model: self.
panel insideColor: Form white,
panel . 4
addSubView: self gaugeSetl
in: (0 @ 0 extent: 1 / cnt @ 1)
borderWidth: 1.
cnt = 1 ifTrue: [“panel].
panel
addSubView: self gaugeSet2
in: ((l/ent) @ 0 extent: 1 / cnt @ 1)
borderWidth: 1.
cnt = 2 ifTrue: [“panel].
panel .
addsubView: self gaugeSet3
in: ((2/cnt) @ 0 extent: 1 / cnt @ 1)
borderWidth: 1.
ent = 3 ifrrue: [“panel].
panel

avuootYiew: Yol groweSwrt

in: ((3/cnt) @ 0 extent: 1 / cnt @ 1)
borderWidth: 1.

cnt = 4 ifTzue: (“panel].

panel
addSubView: self gaugeSet$S
in: ((4/cnt) @ O extent: 1 / cnt @ 1)
bordezWidth: 1.

cat = 5 ifTrue: {“panel].

panel

5,073,392
293 294
addSubView: self gaugeSet$

in: ((S5/cnt) @ 0 extent: 1 / cat @ 1)
bordezWidth: 1.

cat = 6 ifTrue: [“panel).

panel
addSubView: self gaugeSet?
in: ((6/cnt) @ 0 extent: 1 / cnt @ 1)
borderWidth: 1.

~“panel!

buildPatchPanelWith: aTriplet

"here we build 2 views, one imbedded in the other, to display the
color”

"This one defaults to a single patch in the center of the surzound
on index 3

for the regressed color."

| patchPanel theTriplet thePatch tripletCoTwo ind |
patchPanel _ View new.
thePatch __ ColorFormView new.
ind _ SLCMapIndex new. ind index: 3.
thePatch model: ind.
patchPanel
addSubView: thePatch
in: (0.2 @ 0.2 extent: 0.6 @ 0.6)
bordezilideh: 1.

~patchPanel!

buildPatchPanelWith: aTriplet andSurround: surroundlriplet

"nere we build 2 views, one imbedded in the other, to display the
coloc"

“Index 4 is used for the surround”

“This one defaults to a single patch in the center of the surzcund

on index 3

for the regressed color."

| patchPanel theTriplet thePatch tripletCoTwo |
patchPanel _ SLCCocloredBoxesView new.

patchPanel model: self.

5,073,392
295 296

theTriplet _ OrderedCollection new.
theTriplet add: surroundTriplet.
patchPanel
buildAndAssembleForInsertionUsing: theTriplet
IndexBase: 4
rows: 1
columns: 1.
thePatch _ SLCColoredBoxesView new.
thePatch model: self.
tripletCoTwo _ OrderedCollection new.
tripletCoTwo add: aTriplet.
thePatch
buildAndAssembleForInsertionUsing: tripletCoTwo
IndexBase: 3
rows: 1
columns: 1.
patchPanel
addSubView: thePatch
in: (0.2 @ 0.2 extent: 0.6 @ 0.6)
bordezWidth: 1.
“patchPanel! !

'SLCGaugedratch methodsFor: 'accessing'!

calibraticn
“return the value of calibration.

For a description of this instance variable, see the comment

in the accessing method 'calibration:'."
~calibration!

calibration: aParameter
"set the value of calibration.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
calibration _ aParameter!

cost

"return the value of cost.

5,073,392
297 298

For a description of this instance variable, see the commen:

in the accessing method ‘cost:'."
“cost!

cost: aParameter)
"set the value of cost.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
cost _ aParameter!

device
"return the value of device.
For a description of this instance variable, see the comment

in the accessing method ‘device:'."

~device!

device: aParameter
"set the value of device.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
device _ aParameter!
experiment
"return the value of experiment.
For a description of this instance variable, see the comment
in the accessing method ‘experiment:'."
~experiment!
experiment: aParameter
"set the value of experiment.
aParameter is expected to be of the class aClass.
This instance variable is used to <explanation>."

experiment _ aParameter!

ivValues

5,073,392
299 300

"return the value of ivValues.
For a description of this instance variable, see the comment

in the accessing method 'ivValues:'."
~ivvalues!

ivValues: aParameter
"set the value of ivValues,
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

ivvValues _ aParameter!

regression
“return the value of regression.
For a description of this instance variable, see the comment

in the accessing method 'regression:'.
~regression!

regression: aParameter
"set the value of regression.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
regression _ aParameter!

triplet
“return the value of triplet.
For a description of this instance variable, see the comment

in the accessing method 'triplet:'."
~triplet!
triplet: aParameter
"set the value of triplet.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

triplet _ aParameter!

5,073,392
301 302

variables

~self experiment trajectory variableDefinitions! !

!SLCGaugedPatch methodsFor: 'releasing'!

release
exgeriment release.
ivvalues do:{:eacn | ivValues at: each release}.

ivValues _ rnil.

cost _ nil.
calibratien _ nil.
device _ nil.
gunTriplet _ nil.
regression _ nil.
super release.! !

Naow oo on oo we oo v on Co oo cc oo cc =n ww o= v o= 91

SLCGaugedPatch class

instancevVariableNames: ‘'‘'!

'SLCGaugedPatch class methodsFor: ‘'‘instance creation'!

openOn: anExperiment
"SLCGaugedPatch openln: kSLCExperiment fromUserExcelTextFile:
'‘Paul''s Reality:EP120.ex.txt')"
| gaugedPatch |
"create and schedule a new instance of me on anExperiment with
center values for each of the independent variables."
gaugedPatch _ self new.
"Set my experiment.”
gaugedPatch experiment: anExperiment.
gaugedPatch calibration: SLCColorCalibration new.

gaugedPatch device: ColorDevice new.

gaugedPatch regression: (SLCSimpleRegression on: anExperiment).

"buildAndAssembleBrowser returns a StandardSystemView all set up."

gaugedPatch buildAndAssembleBrowser controller open! !

SiLColorTripletSrowser subclass: #SLCTripletPatchBrowser

instanceVariableNames: 'red green blue patchIndex surroundIndex

5,073,392
303 304

surzoundGray calibration !

classVariableNames: ''

poolDictionaries: '’

category: 'Color Science Tools'!
SLCTripletPatchBrowser comment:
‘red, grren ancd blue are the gun values for the patch <J..maxGunValue ciZ
the ColozDevice>
patchIndex is the CLUT index used for the patch <0..maxMapIndex>
surroundGray is the level of the gray surround <0..100>

surroundIndex is where the gray is stored in the CLUT <0..maxMapIndex>'!

'SLCTripletPatchBrowser methodsFor: 'scheduling'!

buildAndAssembleBrowser
| topView patch labelHeight gaugeHeight patchHeight cd gray
surzound |

"build the subviews and arrange them in a SSV for scheduling"

topView _ StandardSystemView -
model: self
label: 'T;iplet Patch Browser'
minimumSize: 250 & 70.
topView cacheRefresh: false.
topView borderWidth: 1.
labelHeight _ 1/7.
gaugeHeight _ 1/3-labelHeight.
patchHeight _ 1-(labelHeight+gaugeHeight).
"Left gauge -- 0@0 extent 1/3 @ labelHeight + gaugeHeight"
topView
addSubvView:
{Tetelyiew imbeil- (eolerfripietr eoivrdpreeliwtels av: 139

in: (0 @ 0 extent: (1 / 3) Q@ (labelHeighz))

borderwidth: 1.

topView
addSubView: self valuelDigitGauge
in: (0 @ (labelHeight) extent: (5 / 21) @ (gaugeHeight))

borderWwideh: 1.

5,073,392
305 _ 306

topView
addSubview: self valuelBarGauge
in: ((5/21) @ (labelHeight) extent: (2 / 21) @
(gaugeHeight))
borderWidth: 1.

"Center gauge =-- 1/3 @ 0 extent 1/3 @ gaugeHeight"”
topView
addSubView:
{LabelView label: (colorTriplet colorSpacelabels at: 2))
in: ((1/3) @ 0 extent: (1 / 3) @ (labelHeight))
bordezWidth: 1.

topView
addsubvView: self value2DigitGauge
in: ((1/3) @ (labelHeight) extent: (5 / 21) @ (gaugeHeight))
borderWidth: 1.

topView
addSubView: self value2BarGauge
in: ({(12/21) @ (labelHeight) extent: (2 / 21) @
(gaugeHeight))
borderWidth: 1.

"Right gauge -- 2/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabélView label: (colorTriplet colorSpacelabels at: 2))
in: ({2/3) @ 0 extent: (1 / 3).@ (labelHeight))

bordezrWidth: 1.

topView
addSubView: self value3DigitGauge
in: ((2/3) @ (labeiHeight) extent: (5 / 21) @ (gaugeHeighz))
borderWidzh: 1.

topView
addSubvView: self value3BarGauge
in: ((19/21) @ (labelHeight) extent: (2/21) @ (gaugeHeight))

borderWidth: 1.

5,073,392
307 |

"The colorPatch"

308

surround _ SLCColoredRectangle new.

surround maplIndex: 5.

cd _ CelorDevice new.

gray _ (cd maxGunvValue).

cd setColorMapEntry: 5 toRedValue: gray greenValue: gray
blueValue: gray.

patch _ SLCColoredRectangle new.
patch mapIndex: 6.

cd _ ColorDevice new.

gray _ {(cd maxGunValue) // 2.

cd setColorMapEntry: 6 toRedValue: gray greenValue: 0 blueValue:

0.
surround addSubView: patch
in: ({(1/4)Q@(1/4) extent: (1/2)@(1/2))
borderWidth: 1.
topView
addSubView: surround
in: ((0) @ (gaugeHeight + labelHeight) extent: (1) @
(patchHeight))
borderWidth: 1.
~copView!

buildAndAssembleNewBrowser
| :opView.patch labelEeight gaugeHeight patchHeight c¢cd gray
surrosund labelWidth |

"build the subviews and arrange them in a SSV for scheduling!
topView _ StandardSystemView
model: self
label: 'Triplet Patch Browser 5:6°'
minimumSize: 250 @ 70.
topView cacheRefresh: false.
topView borderWidth: 1.
labelHeight _ 1/20.
labelwWidth _ 1/10.

5,073,392
309 310

gaugeHeight _ 1-(2*labelHeight).

patchHeight _ 1.

“Left gauge -- 0Q0 extent 1/3 @ labelHeight + gaugeHeight"

topView

addSubView:
(Labelviey label: (colorTriplet colorSpacelabels at: 1))
in: (0 @ 0 ektent: (labelwidth) @ (labelHeight))
borderWidth: 1.

topView
addSubView: self valuelDigitGauge
in: (0 @ (labelHeight) extent: (labelWidth) @ (labelHeight))
borderWidth: 1.

topView

addSubView: self valuelBarGauge

in: (0 @ (2*labelHeight) extent: (labelWidth) @
(gaugeHeight))

borderWidth: 1.

"Center gauge -- 1/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels ac: 2))
in: ((labelWidth) @ 0 extent: (labelWidth) @ (labelZeignz))
borderWideh: 1.

topView
addSubvView: self value2DigitGauge
in: ({labelWidth) @ (labelHeight) extent: (labelWid:th) @
{labelHeight))

borderWidth: 1.

topView
addSubView: self value2BarGauge
in: ((labelWidth) @ (2*labelHeight) extent: (labelWid:sh) @
(gaugeHeight))
borderWidth: 1.

5,073,392
311 312

"Right gauge -- 2/3 @ 0 extent 1/3 @ gaugeHeight"
topView v
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 3))

in: ((2*labelWidth) @ 0 extent: (labelWidth) @
(labelReight))

borderwidth: 1.

topView
addSubView: self value3DigitGauge

in: ((2*labelWidth) @ (labelHeight) extent: (labelWid:h) @
(labelHeight))

borderwiith: 1.

topView
addSubView: self value3BarGauge
in: ((2*labelWidth) @ (2*labelHeight) extent: (labelWid=h) @
(gaugeHeight))
borderWidth: 1.
"The colorPatch"

surround _ View new.

patch _ SLCCeloredRectangle new.
patch maplndex: 6.

cd _ ColorDevice new.

gray _ {(cd maxGunvValue) // 2.

cd setColorMapEntry: 6 toRedValue: 0 greenValue: 0 blueValue: 0.

surround addSubView: patch
in: ((1/4)@(1/4) extent: (1/2)@(1/2))
borderWidth: 1.

topView .
addSubView: surround
in: ((3 * labelWidth) @ 0 extent: (l-(3*labelWidth)) @ 1)
borderWidth: 1.

“topView!

buildAndAssembleNewBrswserForIinsertion

5,073,392
313 314
| topView patch labelHeight gaugeHeight patchHeight cd gray

surround labelWidth aView |

*pbuild the subviews and arrange them in a SSV for scheduling"

aView _ View new model: self.
topView cacheRefresh: false.
topView borderWidth: 1.
labelHeight _ 1720.
labelwidth __ 1/10.
gaugeHeight _ l1-(2*labelHeight).
patchHeignt _ 1.
"Left gauge -- Q@0 extent 1/3 @ labelKeight + gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 1))
in: (0 @ 0 extent: (labelWidth) @ (labelHeight))
bordezwidth: 1.

topView
addSubView: self valuelDigitGauge

in: (0 @ (labelHeight) extent: (labelWidth) @ (labelHeight))
borderWidch: 1.

topView
addSubView: self valuelBarGauge

in: (0 @ (2*labelHeight) extent: (labelWidth) @
{gaugeHeight))
borderWidth: 1.

“Center gauge =-- 1/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView: _
(LabelView label: (colorTriplet colorSpacelabels at: 2))
in: ((labelWidth) @ 0 extent: (labelWidth) @ (labelHeight))
borderWidth: 1.

topView
addSubView: self value2DigitGauge
in: ((labelWidth) @ (labelHeight) extent: {labelWidth) @

5,073,392
315 316

(labelHeight))
borderWwidth: 1.

topView

addSubView: self value2BarGauge

(S

in: ((labelWidth) & (2*labelHeight) extent: (labelWid:sh)
(gaugeHeight))
borderWideh: 1.

"Righ: gauge -- 2/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 3))
in: ((2*labelWidth) @ 0 extent: (labelWidth) @
(labelHeight))
borderWidth: 1.

topView
" addSubView: self value3DigitGauge
in: ((2*labelWidth) @ (labelHeight) extent: (labelWid:th) @
(labelHeight))
borderWidth: 1.

topView
addSubView: self value3BarGauge
in: ((2*labelWidth) @& (2*labelHeight) extent: (labelWidth) @
(gaugeHeight))
bozrderWidth: 1.
"The colorPatch”
surround _ SLCColoredRectangle new.
surround mapIndex: S.
cd _ ColorDevice new.
gray _ (cd maxGunValue).
cd setColorMapEntry: 5 toRedValue: gray greenValue: gray
bluevalue: gray.

patch _ SLCColoredRectangle new.
patch mapIndex: 6.

cd _ TolorDevice new.

5,073,392
317 318

gray _ (cd maxGunvalue) // 2.

cd setColorMapEntry: 6 toRedValue: gray greenValue: 0 blueValue:

surround addSubView: patch
in: ((1/4)Q@(1/4) extent: (1/2)@(1/2))

borderWidtn: 1.

topView
addSubView: surrcund
in: {(3 * labelwWidth) @ 0 extent: (l=-(3*labelWidth)) 2 1)
borderWidch: 1.

“copView! !
'SLCTripletPatchBrowser methodsFor: 'private'!

badComputeGunValues
| max capl a2 b capX capY capZ k redNormalize greenNormalize
blueNormalize ocffset |
"bogus for Lab kindof"
max _ (ColorDevice new) maxGunValue.
caplL _ self colorTriplet valuel.
a _ self colorTriplet value2.
b _ self colorTriplet valueld.
"calculate X,Y,2 (see Gardner manual)"
capX _ (capL / 100) * ((0.5602 * a) + (0.9804 = capl)).
capY¥ _ {(capL * capl)/100.
capZ _ (capl / 59.27)*((0.7 * caplL) - b).
"Now, calculate red, green and blue gun values"
"k and the normalization factors are bogus here"
"the coeefficients are based on actual SuperMac Color monitor display
phosphor chromaticities.™
"see Cowan SIGéRAPH '84, p 48"
offset _ 170.0.
x _ 1T,
redNormalize _ greenNormalize _ blueNormalize _ 1.
red _ ((k/redNormalize) * (offset + (2.167 * capX) - (0.937 = capY) -
(0.344 * capZ)))//1.
gzeen _ ((k/greenNormalize) * (offset + (-1.264 * capX) + (2.225 * cap¥

+ (0.066 * cap2)))//1.

5,073,392

319 320
blue _ ((k/blueNormalize)* (offset + (0.097 * capX) -~ (0.288 = cap¥) +

(1.278 * cap2)))//1.

patchlndex _ 6!
changePatchGuns
| ed |

cd _ ColorDevice new.

cd
setColorMapEntry: patchlndex
toRedValue: red
greenvValue: green
bluevalue: blue!
changeSurroundGuns

"compute Gun level from surroundGray value which is a percentage"

! ed gray |
cd _ ColorDevice new.
gray _ cd maxGunValue * (surroundGray / 100).
cd
setColorMapEntry: surroundIndex
toRedValue: gray
greenValue: gray

bluevalue: gray!

recomputeBogusGunValues
| max 1 |

"bogus for Lab kindeT™

max _ (Colorlevice new) maxGunValue.

zed _ ((0.3 + ((self colorTriplet value2) /122)) * max)//l.
blue _ ((0.5 - ((self colorTriplet value3) /122)) * max)//1.
green_(((self colorTriplet valuel)/100). * max)//1.

patchIndex _ 6.!

recomputeGunValues
| rgbTriplet |

rgbTriplet _ calibration computeGunsFrom: self cclcoxTriplet.

5,073,392

321

(rgbTriplet isNil)ifFalse:(red _

reen _ cgbTriplet greenGun.
blue
patchlndex _ 6! !

322

rgbTriplet redGun.

_ IgbTziplet blueGun]ifTrue:(red_green_blue_ 0].

!SiCTlripletPatchBrowser methodsFor: 'indirect accessing'!

valuel: aNumber
"set valuel in my colorTriplet"
“This is sent when the gauge is
self colorTriplet valuel: ((aNumber *
"Here I change the CLUT. I calculate
the colorSystem and write them to the
self recomputeGunValues.
self changePatchGuns.'!
value2: aNumber
"set valuel in my colorTriplet™
"This is sent when the gauge is
self colorTriplet valuel2: ({aNumber *
"Here I change the CLUT. I calculate
the colorSystem and write them to the
self recomputeGunValues.

self changePatchGuns.!

value3d: aNumber
"set valuel in my colorTriplet™
»This is sent when the gauge is
self colorTriplet value3: ((aNumber *
"Yere I change the CLUT. I calculate
the colorSystem and write them to the
self recomputeGunValues.

self changePatchGuns! !

'SLCTripletPatchBrowser methodsfor:

blue

mreturn the value of blue.

jerked azoungd”

100) truncated / 100) asFloat.
the gun values now associated with

CLUT at patchlndex."”

jerked around"
100) truncated / 100) asFloat.
the gun values now associated wizh

CLUT at patchlIndex."

jerked around"
100) truncated / 100) asfloat.
the gun values now associazed with

>LUT at patchlndex.”

‘accessing'!

5,073,392
323

in the accessing method ‘'blue:'.”

“blue!

blue: aParameter

"set the value of blue.

324

For a description of this instance variable, see the ccmment

aParameter is expected to be of the class aClass.

This instance variable is used to <explanazion>.®

blue _ aParameter!

calibration

“calibration!

calibration: aColorCalibration

calibzation _ aCelorxCalibration!

green

“"raturn the value of green.

For a description of this instance variable,

in the accessing method 'green:'."

~green!

reen: aParameter

“"set the value cf green.

see the

aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

green _ aParameter!

patchIndex

"return the value of patchlndex.

For a description of this instance variable,

in the accessing method 'patchIndex:'."™

“patchlndex!

patchlIndex: aParameter

see the

comment

comment

5,073,392
325 326

*set the value of patchlndex.
aParameter is expected tc be of the class aClass.

This instance variable is used to <explanation>."

patchiIndex _ aParameter!

zed
"return the value of red.
For a description of this instance variable, see the conmment
in the accessing method 'red:*'."

~red!

red: aParameter

nset the value of red.

aParameter is expected %o be of the ss aClass.

la
This instance variable is used to <explanation>."
red aParameter!

surroundGray
"return the value of surrcundGray.

For a description of

(14

his instance variable, see the ccmment

in the accessing method 'surzoundGray:'."

~surroundGray!

surroundGray: aParameter
"set the value of surroundGray.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

surroundGray _ aParameter!

surroundIndex
"return the value of surroundlndex.
For a description of this instance variable, see the commen:

in the accessing method 'surroundIndex:'."

~surroundIndex!

5,073,392
327 328

surroundIndex: aParameter
"set the value of surroundIndex.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
surroundIndex _ aParameter! !

!SLCTripletPatchBrowser methodsFor: ‘releasing'!

release
red _ nil.’
green _ nil,
blue _ nil,
patchindex _ nil.
surroundiIndex _ ail.
surroundGray _ nil.
calibration _ =nil.

super release!

removeDependent: anObject
"this message is intercepted to help break scme other dependencies
when an

instahce of me is scheduled alone"

self releass.

3uper removeDependent: anObject! !

SLCTzipletPatchBrowser class

instancevariableNamas: ''!
'SLCTripletPatchBrowser class methodsFor: 'instance creation'!
newOn: anSlColorTriplet

1 etb |

"create and return a new instance of me on anSlColorTriplet”

ctb _ self new.

ctd colorTriplet: anSLColorTriplet.

5,073,392
329 330
ctb calibration: SLCColorCalibration new.

o

cn: anSlColerTriplet

i eeh |

"create and return a new instance of me on anSLColozTriglez”

ctd _ self new.
ctd colorTriplet: anSlColorTriplet.
etb calibration: SLCColorCalibraticn new.

E3-N

epenNewOn: anSLColorTziplet
“create and schedule a new instance of me on anSLColorTriplez"
"SLCTripletPatchBrowser openNewOn: (SLLabHunterColor new).”
"SlLCTripletPatchBrowser openNewOn: (SLYxyColor new)."
"SLCTripletPatchBrowser openNewOn: (SLRGBGunsColer new)."
"SLCTripletPatchBrowser cpenNewOn: (SLXYZColor new) ."
l ceb |
ctb _ self newOn: anSlColorTriplet.

ctb buildAndAssembleNewBrowser controller open!

cpendn: anSlColozTrziplet
"create and schedule a new instance of me on anSlColorTriplez”
"SLCTripletPatchBrowser cpenln: (SLLabHunterColor new)."
"SLCTripletPatchBrowser cpenlOn: (SLYxyColor new).”
"SLCTripletPatchBrowser openOn: (SLRGBGunsCclor new)."
'SLcr:ipld:PatchB:avsor openOn: (SLXY2Color new) ."
| eth |
cth _ self on: anSlColorTriplet.
ctb buildAndAssembleBrowser cont:plle: open! !

SLObject subclass: iSLcrhreeByTh:eesroner

instancevVariableNames:! 'experiment ivValues gzidValues xIndex
yIndex gridTriplets '

classVariableNames: ‘'

poclDictionaries: '

category: 'Color Science Tools'!

5,073,392
331 332

!SLCThreeByThreeBrowser methodsFor: 'color calculating'!

calculatevalue: aNumber using: dataValues
"aNumber is the regression egquation to use related ts a cclor
tripler value.
dataValues is expected to be an OrderedCollection of numbers.”
"start with intercept. calculate linear terms. calculate 2ad order

cerms.”

| coefs temp | .
coefs _ self experiment coefficientsFor: aNumber.
*this returns an OzcderedCollection®
"The zeroth order term"
temp _ coefs at: 1.
"The linear terms"
1 to: self variableCount do: [:n | temp _ temp + ((ccefs at: n +
1) o
* (dataValues at: n))].
"The pure seccnd orxder terms"”
1 to: self variableCount do: {:n | temp _ temp + ((ccefs at: self
variableCount + n + 1)
* (dataValues at: n) * (dataValues
at: anl.
"The mixed terms"
1 to: (self variableCount = 1) do: {:n | (n+l) to: self
waciableCount <o {om)

"what cocefficient index do I use?”
temp _ temp + ((coefs at: (self experiment coefficientIndexFor: n oy:
m))

* (datavalues at: n) * (datavVa..es
at: m))1l.

~ temp!

convertValue: aValue of: anlndex
"This is generalized conversion routine that will use the
appropriate formula for

the type of conversion required."”

| v cemp |

avValue isNil ifTrue: [*nil}.

5,073,392
333 334

anlndex > self variableCount
ifTzrue:
(self error: ‘That variable doesn 2ot exist to
CONVERT!!'.
“nilj.
v _ self experiment trajectory variableDefinitions at: aniIncex.
v units = 'ratio’
ifTzue:
{temp _ self ratioConvertValue: avalue of: aniIndex.
‘“temp].
temp _ self normalizeValue: avalue of: anlndex.

‘temp!

normalizeValue: aValue ¢f: anlndex
*This routine normalizes an input value using the center and range
values for the

independent variable at index anlIndex. Returns nil for bad inpucz.

| v val galc |
anindex > self variableCount

ifTrue:

[selt'e::or: ‘That variable doesn not exist =o
NCRMALIZE!!'.
“nil].
v _ self experiment trajectory variableDefinizions at: anlIndex.
"v is an ExtendedVariableDefiniticn now."
val _ aValue.
val < v min
ifTzrue: (val _ v min]
ifFalse: [val > v max ifTrue: [val _ v max]}}.
calc _ val - v center / v range.

~calc!

ratioConvertValue: avValue of: anlndex
"This routine normalizes an input value using the center and range
values for the

independent variable at index anIndex. Returns nil for bad input.

This is slightly different than a straight normalize. Iz is used

£9 convert an input ratio %o

5,073,392
335 336

a coded (-1,0,1) value used for regressed value calculaticen.®

| v val cale inv |
anlndex > self variableCount
ifTrue:
[self erzor: 'That variable does not exist to RATIC
CONVERT!!"'.
“nil]l. ‘
v _ self experiment trajectory variableDefinitions at: anindex.
"v is an ExtendedVariableDefinition now."
val _ avalue.
val < v min
i£Tzue: (val _ v min]
ifFalas: [vad > v max illoue: {(sal _ v mami].
val = 0 ifTrue: [inv _ 999999999)ifFalse: (inv _ 1/val].

cale _ {(1/(l+inv) - v center) / v range).

“cale! !
'SLCihreeByThreeBrowser merncdsfor: 'trajectory accessing'!
cclozrSpace

~self experiment trajectory colozSpace!
description

“self experiment trajectory description!
name

“self experiment trajectcry name!
variableCount

“self experiment trajectory variableDefinitions size! !
!SLCThreeByThreeBrowser methodsFor: 'accessing'!

experiment

5,073,392
337 338

"return the value of sxpsriment.
For a description of this instance variable, see the commernt

in the accessing method 'experiment:'."
“sxperiment!

experiment: aParamster
"set the value of experiment.
aParameter is expected tc be of the class aClass.

This instance variable is used to <explanation>."

experiment _ aParameter!

ridTriplets
g .
"return the value of gridTriplezs.
For a descripticn of this instance variable, see the ccmment

in the accessing method 'gridTriplecs:'."

| tripletClass |
grzidlziplets isNil
ifTzue:
{"figure out what class the Triplets should beleng
to."
tzipletClass _ SLColorTriplet allSubclasses deatect:
{:each | each new colorSpace = self experiment trajectory colorSpace]
ifNeone:

[self inform: 'That space sces
not exist!!"',

“nil}.
gridiriplets _ OrderedCollection new.

1l to: 8 do: [:n | gridTriplets add: trzipletClass new;.
I.
“gridTriplets!

gridTriplets: aParameter
"set the value of gridTriplets.

aParameter is expected to be of the class OrderedCollection of
slements of ColorTriplet

subclasses. This instance variable is used.”

gridTriplets _ aParameter!

5,073,392
339 340

gridvValues
"return the value of gridvalues.
For a descriprion of this instance vaziabla. 388 ihs cozzen:t

in the accessing method 'gridvalues:*'."

gridvValues isNil ifTrue:(gridValues _ OrderedCollection rnew.j.

~gridvalues!

gridvalues: aParameter
"set the value of gridvValues.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
gridvalues _ aParameter:

ivValues
"return the value of ivValues.
For a description of this instance variable, see the comment

in the accessing method 'ivvValues:'."

ivvalues isNil ifTrue:(ivValues _ OrderedCollection new.
1 to: self variableCount do:{:n | ivValues acdd: nil]].

~ivValues!

ivValues: aParamater
"set the value of ivValues,
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
ivValues _ aParameter!
xIndex
“return the value of xIndex. ‘
For a description of this instance variable, see the comment
in the accessing method 'xIndex:'."

“xIndex!

xingux: TrTameter

"sat the value of xIndex.

5,073,392
341 342

aParameter is expected =c be of the class aClass.

This instance variable is used to <explanation>."
xIndex _ aParameter!

yIndex
"return the value of ylIndex.
For a description ¢f this instance variable, see the ccmment

in the accessing method 'yIndex:'."
“yIndex!

yIndex: aParameter
"set the value of ylIndex.
aParameter is expected t0 be of the class aClass.

This instance variable is used to <explanation>."
yIndex _ aParameter! !
'SLCThreeByThreeBrowser methodsFor: 'building'!

buildAndAssembleBrowser
"SLCThreeByThreeBrowser newlyBuilt”
| string paraml param? varDefs vals message v temp minString

maxString str minStream str2 maxStream theGrid |

"Find out what x and y axis variables aze"
varDefs _ self experiment trajectory variableDefinitions.
xIndex _ 0.
[xIndex = ()
whileTzue:
{string _ FillInTheBlank request: 'Enter a variable
name for the X axis:'.
1 to: self variableCount do: [:n | string = (varzDefs

at: n) name ifTrue: [xIndex _ n}].

xIndex = 0 ifTrue: [self error: 'No variable like
that!!')].
yIndex _ 0,
{yIndex = 0)

whileTrue:

5,073,392
343 344

(stzing _ FillInTheBlank request: 'Enter a variable
name for the Y axis:'.
i zo: self variableCount do: [:n | string = (vazlefs
at: n) name ifTrue: [yIndex _ nj}].
yindex = Q0 if7T=zue: [self error: 'No variable like

shat!!']].

"Find out the values for every other variable in the colleczion”

vals _ self ivValues,

1 to: self variableCount do:["For each of the variables"

:n! ((n = xIndex) |(n = yIndex)) ifFalse:{ "If it's not the x oc
y index"

vals at: n put: nil.

{({ivValues at: n) = niliwhileTrue:(message _ 'Value £zzr ',

v _ varDefs at: n.

str _ ReadWriteStream on: ''.

(v min} printOn: str.

minString _ str contents,

str2 _ ReadWriteStream on: ''.

(v max) printOn: str2.

maxString _ str2 contents,

message _ message , v name asString, ' (min: ', minString , ',
max: ', maxString , ' ', v units, ")'.

string _ FillInTheBlank request: message.

vals at: n put: (string asNumber).

11

ifTrue:{vals at: n put: nil "for the x and y axis related
vaciables since they ave haandied elesviee.]].

self ivValues: vals.

"The x and y variable indices are determined and the values of th
other variables are set."” ‘

"Generate the lab values for each cell in the grid"

"Always three in the X and three in the ¥, -1,0, and 1 for now."

self makeCodedGrid. "This sets up a (-1,0,1) OrderedColleczicn of

values £or each of the cells in the grid in gridvalues."

self calculateGridTriplets.

5,073,392
345 346

"At this peint the QOrderedCcllection in gridTriplets shoulsd
contain the Lab values of the Grid."

theGrid _ SiLCColoredBoxesView new.

theGrid buildAndAssembleForInsertionUsing: gridTriplets IncexBase:
100 rows: 3 columns: 3.

~theGrid!

buildAndAssembleGrid
"SLCThreeByThreeBrowser newlyBuile™
| string paraml paraml varDefs vals message v temp minString

maxStrzing str minStream str2 maxStream theGrid |

"Find cut what x and y axis variables are"
varDefs _ self experiment trajectory variableDefinitions.
-xIndex _ 0.
{xIndex = 0]
whileTrue:
{string _ FillInTheBlank request: 'Enter a wvariable
name for the X axis:'.
1 to: self variableCount do: [:n | string = (vazDefs

aT: N e ITTrTee {xIiMwex _1‘1‘3‘)' .

xIndex = 0 i1fTrue: (self. error: 'No variable like
chat!! '],
vindex _ 0. !
yindex = 0}
whileTzue:
(string _ FillInTheBlank request: 'Enter a variable
name f£or the Y axis:'.
1 to: self variableCount do: {:n | string = (vazlefs
at: a) name ifTrue: (yIndex _ nl].
yIndex = 0 ifTzue: [self errcr: 'No variable like

chas!!"].

"Find out the values for every other variable in the colleczion”
vals _ self lvValues,

1 to0: self variableCount do:("For each of the variables"

:al ((n = xIndex) !(n = yIndex)) ifFalse:("If it's not the x ==

y index"

5,073,392
347 348

vals at: n put: nil.

{{ivValues at: n) = nillwhileTrue:[message _ 'Value for '.

v _ wvarDefs at: n.

stz _ ReadWriteStream on: ''.

(v min) printOn: str.

minString _ str contents.

str2 _ ReadWriteStream on: ''.

(v max) printOn: strl.

maxString _ str2 contents.

message _ message , v name asString, ' (min: ', minsStzing , ',
max: ', maxStrzing , ' ', v units, ')'.

string _ FillInTheBlank request: message.

vals at: n put: {(string asNumber).

11

ifTrue: {vals at: n put; nil "for the x and y axis related
variables since they are handled elsewise."]).

self ivValues: vals.

"The x and y variable indices are determined and the values of the
other variables are set.”

"Generate the Lab values for each cell in the grid"

"Always three in the X and three in the ¥, =-1,0, and 1 fos now."

self makeCodecdGrid. "This sets up a (-1,0,1) OzceredColleczion of:
values for each of the cells in the grid in gridValues."

self calculateGridTziplets.

"At this point the OrderedCollection in gridlziplets shoulc
contain the Lab values of the Grid.”

~gzidTziplets!

buildAindAssembleNewGrid '
| varDefs vals message v str minSt:ing str2 maxString stzing |
"SLCThreeByThreeBrowser newlyBuilg”
self getXAndY¥Iadices.
self getVarValues.
self makeCocdedGrid.
self calculateGridTriplets.

~gridTriplets!

5,073,392
349 350

calculateGridTriplets

| inputs |
1 to: 9 do:[:n |

inputs _ gridValues at: n.

{(self gridTziplets at: n) valuel: (self calculateValue: ! using:
inputs).

(self gridTriplets at: n) value2: (self calculateValue: 2 using:

inputs).

(self gridTriplets at: n) value3: (self calculateValue: 3 using:
inputs)l}.

“gridTriplets!

getVarValues
| varDefs vals message v str minString str2 maxString stzing |
varDefs _ self experiment trajectory variableDefinitions.
"find out the values for every other variable in the colleczizn"
vals _ self ivValues.
1 to: self variableCount do: (:n | "For each of the variables"
n = xIndex | (n = ylIndex)
ifTrue: [vals at: n put: nil
“for the x and y axis related variables since
they are handled
elsewise."]
ifralse:
["If it's not the x or y index"
vals at: n put: nil.
[(ivVvalues at: n)
= nil]
whileTrue:
[(message _ 'Value for '.
v _ varDefs at: n.
str _ ReadWriteStream on: ''.
v hin printOn: str.
minString _ str contents,
str2 _ ReadWriteStream on: ''.
v max printOn: stz2.
maxString _ str2 contents.
message _ message , v name assStIing

, ' (min: ' , minString , ', max: ' , maxString , ' ' , v units , ") '.

5,073,392
351 352
string _ FillInTheBlank request:

message.

vals at: n put: scring asNumber]];.
self ivValues: vals.!

getXand¥Indices

*Find out what x and y axis variables are®

{ varDefs aStream |
varDefs _ self experiment trajectory variableDefinitions.
aStream _ WriteStream on: (String new: 200).
aStream nextPutAll: 'Pick Horizontal Variable:'; c=.
xIndex _ 1.
varDefs do: [:var | aStream nextPutlAll: var name; c:).
astream skip:. -1,
(xIndex = 1]
whileTrue:
{xIndex _ (PopUpMenu labels: aStream contents lines:
#$(1)) starzUp.
xIndex > 1 ifFalse: [self error: 'You must pick
sne!!'1].)
xIndex _ xIndex - 1.
"Because of header"
astream _ nil.
aStream _ WriteStream on: (Stzing new: 200).
aStream nextPutall: 'Pick Vertical Variable:': c=z.
yindex _ 1.
1 to: varDefs size do: (:n | n = xIndex .ifFalse: (aStream
nextPutAll: (varDefs at: n) name; crl].
‘ aStream skip: =-1.
{yIndex = 1]
whileTrue: (yIndex _ (PopUpMenu labels: aStream contents
lines: #(1)) startUp].
*xIndex is already normalized”
yIndex _ yIndex - 1.
"Now so is y"
yIndex >= xIndex
ifTrue: ["second pick was at or after position of fizst

pick"

5,073,392
353 354
yIndex _ yIndex + 1.

"In essence, bump it cne"]}!

makeCodedGri
"Generate the Lab values for each cell in the grid"
"Always three in the X and three in the ¥, -1,0, and 1 £5r new."

"Using (X,Y) notation:

1 | {-1,1) Il (0,1) I (1,2 I

Q ! (=10 I (0,0 I (1,0) !

-1 ! (=1,-1) I (¢,-1) I (L,~1) l
-1 0 l

| codedValues codedVals cocdedOnes x y nTuple |
"Lazy initialize. This makes up a 9 trziplet set of the proper
sister class.”

self gridlriplets.

"I'm doing this on purpose here to make sure it is empty Sor the

add: belew."

gridvalues _ OrderedCollecticn new.

N
0
1]

"codedValues is now set up as an -1,0,1 range n-tuple with nil
x and y vars." '

codedValues _ OrderedCollection new.

1l to: self variableCount do: (:n | codedValues add: (self
convertValue: (ivvValues at: n)

cf: n)).

codedOnes _ #(-1 0 1) asOrderedCollection.

1l to: 3 do: f{:zow | 1 to: 3 do:

(:column |

"Make a new one."

aTuple _ CrderedCollection new.

1 to: self variableCount do: ([:n | nTuple add:

{codedValues at: n)l.

5,073,392
355 356
“Set up X and ¥Y".

x _ codedOnes at: column.

y _ codedOnes at: 4 - row.
"Cells numbered from upper lefc"
nTuple at: xIndex put: x.

nTuple at: yIndex put: y.
gridvalues add: aTuple]}!

putlabelsOn
| varDefs xName yName xLabel ylLabel |
varDefs _ seif experiment trajectory variableDefiniczisns.
xName _ varDefs at: xIndex name.
yName _ varDefs at: ylIndex name.
xlabel _ LabelView label: xName.

ylabel _ LabelView label: yName.! !
'SLCThreeByThreeBrowser methodsFor: 'releasing'!

release

experimant release.

experiment _ nil.

ivvalues do:(:each | ivValues at: each release].
ivValues _ nil.

gridvalues do:(:each | gridvalues at: each release].
gridvalues _ nil.

xIndex _ nil.

yindex _ adld.

gridTriplets do: (:each | gridrripleﬁs at: each release]).

gzidTriplets _ nail.

super release.! !

Moo oo o= 2 ce mm cm ce om me mm == mm ee e o= em e M)

SLCThreeByThreeBrowser class

instanceVariableNames: ''!

!SLCThreeByThreeBrowser class methodsFor: 'instance creaticn'!

5,073,392 -
357 358

on: anExperiment
! tb tripletCcllection |
b _ self rnew.
th experziment: anExperiment.
tzipletCollection _ tdb buildAndAssembleGrid.
"SLCColorecdBoxesView on: tripletCollection baselndex: 10 rows: 2

columns: 3!

openlabeledOn: anExperiment
i td tzipletCollection colors topView varDefs lbl xIndex yIndex v
valStz vals stz varCount tag xName yName xlLabel yLapel]
tb _ self new.
tb experiment: anExperimen%.
tripletCollection _ tb buildAndAssembleNewGrid.
colors _ SLCColoredBoxesView
on: tripletCollection
baselIndex: 10
rows: 3
columns: 3.
"Build the label"
varDefs _ anExperiment trajectory variableDefinitions.
inl _ ',
TapCaunr aalxpariment travectery wveriebledefinicieons eive.

i to: varCount do:
[:n 1
“For each ¢f the variables"
(¢b ivValues at: n) isNil
| ifTrue: {tag _ nil]
ifFalse:
["If iz's not the x or y index"
v _ vazrDefs at: n.
valStr _ ReadWriteStream on: ''.
(tb ivValues at: n)
zintOn: valstr.
tag _ v name asString , ' = ' , valStrs
contents].
zag = nil
ifFalse:
{ibl = ' ' ifFalse: (lbl _ 1bl , '; '].
bl _ ibl , tagll.

359
xName _ (varDefs a
yName _ (varDefs a

xLabel _ labelView

ylabel _ leftlabel

5,073,392

t: b xIndex) name.
t: tb yIndex) name.
label: xName.

View label: yName.

topView _ StandardSystemView

topView cacheRefre
topView borderWide
topView
addSubView:
in: (0.1 6@ 0
borderWidth:
topvView
addSubView:
in: (0.1 6 0
bordezwidth:
topView

model: self

label: tb name
minimumSize: 250 @ 250.
sh: false,.

h: 1.

(LabelView label: lbl)
.025 extent: 0.8 @ 0.05)
1.

xLabel
.93 extent: 0.8 @ 0.05)

0.

addSubView: ylLabel

in: (0.03 @ 0.1 extent:

borderWwidth:

topView

0.05 8 0.8)
0.

addSubView: colors

in: (0.1 8 0.

borderwidth:

topView controller

-

1 extent: 0.8 @ 0.8)
1.

open!

cpenlabeledCn: anExperiment withBase: baselIndex

| th zzipletCollection colers topView varDefs 1bl xInde

valStr vals str varCount tag xName yName xLabel ylabel |

th _ self new.

tb experiment: anExperiment.

tripletCollection _

colors _ SLCColore

tb buildAndAssembleNewGrid.
dBoxesView

on: tripletCollection
baselIndex: baselndex

rows: 3

columns: 3.

360

x yIndex v

5,073,392
361 362
“Build the label™

varDefs _ anExperiment trajectory variableDefiniticns.
bl _ ' .
varCount _ anExperiment trajectery variableDefinitions size.
1 to: varCount do:
{:n |
"For each of the variables”
{(tb ivValues at: n) isNil
ifTrue: ([tag _ nil]
. ifFalse:
("If it's not the x or y index”
v _ varDefs at: n.

valStr _ (tb ivValues at: n) printString.
ceg _ v mAamm eStTing |, ‘e ¢, walter),

tag = nil
ifFalse:
(ibl = ' ' ifFalse: [lbl _ ibl , '; '].
1bl _ lbl , cagl].
xName _ (varDefs at: tb xIndex) name.
yName _ (varDefs at: td yIndex) name.

xLabel _ labelView label: xName.
ylabel _ leftlabelView label: yName.
topView _ StandardSystemView
model: self
label: ﬁb name , ' ' , baselndex printString
» (baselndex + 8) printString
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderwWideth: 1,
topView
addSubView: (labelView label: 1bl)
in: (0.1 @ 0.025 extent: 0.8 @ 0.095)
borderWidth: 1. '
copView
addSubvView: xLabel
in: (0.1 @ 0.93 extent: 0.8 @ 0.05)
borderWidth: 0.
topView

addSubView: ylLabel

5,073,392
363 364

in: (0.03 @ 0.1 extenz: 0.05 @ 0.8)
bordezWidth: 0.

topView '
addSubView: cclors
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderwidth: 1.

topView controller open!

coenln: anExperiment
1 b Triplertollection 1

tbh _ self new.

tb experiment: anExperiment.
tripletCollection tb buildAndAssembleGrid.

SLCColoredBoxesView openln: tripletCollection baselndex: 10 rows:

3 columns: 3!

startupln: anExperiment
| baseIndex string bottomCell limitCell |
bottomCell _ 7.
"l through 6 reserved for fixed tools"
limicCell _ 240. "A 3 by 3 takes nine map entzies"
baselIndex _ limitCell + 1. '
(baselndex > limitCell | (baselIndex < bottomCell))
whileTrue:
{stzing _ FilllInTheBlank requesz: 'Beginning color map
index? (7-240)°'.
baselIndex _ string asNumber.
baseIndex < bottomCell ifTrue: (self inform: 'Incex =2
teo low!! :' , baselndex printStzing).
baselindex > limitCell ifTrue: (self inform: 'Index to
aigh!! :' , baselIndex printString)l}.
self openlabeledOn: anExperiment withBase: baseIndex! !
SiCThreeByThreeBrowser subclass: #SLCNEyNB=0wse:
instanceVariableNames: 'rzcws

classVariableNames:
Te

poolDictionaries:

category: 'Color Science Tcols'!

'SLCNByNBrowser methodsFor: 'accessing'!

5,073,392

365 366
ridTziplets

"return the value of gridTriplets.
For a description of this instance variable, see the comment

in the accessing method 'gridTriplets:'."

| tripletClass cells |
gridTzriplets isNil
1fTrue:
("Figure ocut what class the Triplets should belong
to."
tripletClass _ SiColorTriplet allSubclasses detec::
{:each | each new colorSpace = self experiment trajectory colb:Space]
ifNone:

{self inform: 'That space soes

not exist!!'.,
“nil].
gridTriplets _ OrderedCollectiocn new.
Cells _ rows * rows.
1l to: cells do: (:n | gridTziplets add: tripletClass
newj.
].
“gridTriplets!
rows

“return the value of rows.

For a description of this instance variable, see the comment

in the accessing method 'rows:'."
“rows!
rows: aParameter
"set the value of rows,
aParameter is expected to be of the class aClass,.
This instance variable is used to <explanation>."

ZOWS _ aParameter! !

!SLCNByNBrowser methodsFor: .'building'!

5,073,392
367 368

calculaseGridTriplets

| inputs cells |
cells _ rows * rows.
1l to: cells do:(:n |

inputs _ gridvalues at: n.

(self gridilriplets at: n) valuel: (self calculateValue: 1 using:
inputs).

(self gridTriplets at: n) value2: (self calculateValue: 2 using:
inputs). ’

(self gridTriplets at: n) valueld: (self calculateValue: 3 using:
inputs)].

~gridTriplets!

makeCodedGrid
"Generate the lLab values for each cell in the grid"

| codedvValues codedVals ccdedOnes x y nTuple value |

"Lazy initialize. This makes up a 9 tripler set of the proper
L3588 Sldas- "

self gridTlriplets.

"I'm doing this on purpose here to make sure it is empty fo; :§e

~acdd: below."

gzidvalues _ OrderedCollection new.

»codedvValues is now set up as an -1,0,1 range n-tuple with nil fo<
x angd y vars."
codedvalues _ OrderedCollection new.

1 to: self variableCount do: [:n | codedValues add: (self

convertValue: {(ivvalues at: n)

of: n)l.

codedOnes _ OrderedCollection new.
1 to: rows do: [:nl value _ (2 * ((a=1)/(zows-1)))} = 1.
codedOnes add: value].
1 to: rows do: [:zow | 1 to: rows do:
{:column |
“"Make a new one."

nTuple _ OrderedCollection new.

5,073,392
369 370

l to: self variableCount do: [:n | nTuple add:

{codedValues at: n)).

"Set up X and ¥Y".

x _ codedOnes at: column.

y _ codedOnes at: (rows + 1) = row.
"Celis numbered from upper left"
nTuple at: xIndex put: x.

nTuple at: yIndex put: y.

gridValues add: nTuple])! !

Noae wo oo oo oo vo oo oo o oo co oo oo oo ao we == ea 1!

SLCNByNBrowser class

instanceVariableNames: '‘'!

! SLCNByNBrewser class methodsFor: ‘'instance creation'!

openlabeledOn: anExperiment withBase: baselndex size: rcws
I tb tripletCollection colors varDefs lbl varCount tag v valsers
xName yName xLabel ylabel topView baseTop |
th _ self new. '
tbh rows: rows.
th experiment: anExperiment.
tripletCollection _ tb buildAndAssembleNewGrid.
colors _ SLCColoredSoxesView
on: tripletCollection
baselIndex: baselndex
| rows: rows
columns: rows.
"Build the label®
varDefs _ anExperiment trajectory variableDefinitions.
1Bl _ ' .
varCount _ anExperiment trajectory QariableDefinizions size,

to: varCount do:

[

Cin

“"For each cf the variables"

(tb ivValues at: n) isNil
ifTrue: (tag _ nil]
ifFalse:

5,073,392

contents].

[

borderWwidth: 1.

topView
addSubView: xLabel
in: (0.1 @ 0.93 extent: 0.8 @ 0.05)
borderwidth: 0. .
zopView
addSubView: yLabel
in: (0.03 @ 0.1 extent: 0.05 @ 0.8)
bordezrWideth: 0.
topView
addSubView: colors
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)

bordezWidth: 1.

topView controller open!

371 372
("If it's not the x or y index"
v _ vazDefs at: n. '
valStr _ ReadWriteStream on: '’'.
{(tb ivValues at: n)
printOn: valStr.
tag _ v name asString , ' = ' , valSt:
tag = nil
itTalve:
{1bl = ' ' ifFalse: (lbi _1bl , ': '].
1bl _ ibl , tagl]. '
xName _ (varDefs at: tb xIndex) name.
yName _ (varDefs at: tb ylIndex) name.
xlLabel _ labelView label: xName.
ylabel _ LeftlabelView label: yName.
baseTop _ baselndex + (rows * rows) =~1.
tcpView _ StandardSystemView
‘model: self
iabel: (tb name, ' ', baselndex print
baseTop printStzing)
minimumSize: 230 @ 250.
topView cacheRefresh: £false.
topView borderWidth: I.
topView
addSubView: (LabelView label: lbl)
in: (0.1 @ 0.025 extent: 0.8 @ 0.05)

-
- s

S

5,073,392

373

startupln: anExperiment

| baselIndex string rows limitCell

bottomCell _ 7.

374

topCell bottomCell |

"l through € reserved for fixed tools"

limitCell _ 250,
baselIndex _ limitCell + 1.

[haseIndex > limitCell |

whileTrue:
{stzing _
index? (7-250)".
baseIndex _

baseIndex < bottomCell

fillInTheBlank reguest:

(baseIndex < bottomCell)]

‘Beginning col.r mag

string asNumber.

ifTrue: [self inform: 'Index t>

(self inform: 'Index to

too low!! :' , baselndex printString).
baseIndex > limitCell ifTrue:
high!! :' , baselndex printStringl].
topCell _ limitCell + 1.

[toprCell > limizCell)

whileTrue:

{string _ FillInTheBlank request:

'Cells on an edge? (

2-15) .

rows _ string asNumber.

topCell _ baselIndex - 1 + (rows * rows).

topCell > limitCell ifTrue: (self inform: 'Top index
t9 high!! :' , topCell printStringl.

rows < 2 ifTrue:[self inform:

cell.'. topCell _ limitCell + 1]
1.
self

‘Cannot be a single

openlabeledOn: anExperiment

withBase: baselIndex

size: rows! !

What is claimed is:
1. A method of forming a food product having a
region of a preselected color comprising:

selecting at least one parameter from a group consist-
ing of color producing agent, heating time value,
color producing agent concentration value, final
food color value, and substrate color value, each
selected parameter defining an input parameter;

inputting each selected input parameter into a pro-
grammed computer means, the computer means
programmed with a functional relationship be-
tween the selected input parameter and at least one
other parameter included in the group, the com-
puter means capable of providing output informa-

55 - tion, the output information defined as at least one
of the parameters in the group other than the se-
lected parameter; and

making a food product suitable for microwave heat-
60 ing according to the output information so that

when the food product is exposed to microwave

radiation, a food product of the desired color is

formed.
2. The method of claim 1 wherein the selected param-
65 eter is selected from the group consisting of a color
producing agent, heating time value, and color produc-
ing agent concentration value, and the output informa-
tion includes final food product color value including
hue and chroma.

5,073,392

375

3. The method of claim 1 wherein the selected param-
eter is final food product color value including hue and
chroma, and the output information includes at least

376

outputting data from said computer means relating to
the output information.

§. The method of claim 1 wherein the output informa-

one of the following group including the color produc- 5 tion includes final food color value and the input param-

ing agent, heating time value, and color producing
agent concentration value.

4. The method of claim 1 wherein the programmed
computer means comprises color graphics output
means, and the method further comprises:

adjusting the food product color on the computer

graphics output means until a desired color is
achieved; and

10

15

20

25

30

35

45

50

55

65

eter further includes at least one of the following:

a browning agent selected from the group consisting
of a mixture of proteins and reducing sugars and a
mixture of prereacted browning intermediates;

controllers selected from the group comprising metal
ions, pH adjusting agents, and carriers; and

microwave exposure time for the product.-
* * * * *

