United States Patent [

Domingues et al.

A O OO A AR A

[54]

PROCESS FOR MICROWAVE BROWNING

[75] Inventors: David J. Domingues, Plymouth;

[73]

{21]
[22]
(51]
[52]

(58]

William A. Atwell, Andover; Paul J.
Beckmann, Mendota Heights; Julio
R. Panama, Blaine; Robin E. Conn,
Minneapolis; Kristin L, Matson,
Coon Rapids; Ernst Graf, New
Brighton, all of Minn.; Milton S.
Feather, Columbia, Mo.; Steven K.
Fahrenholtz, Plymouth; Victor T.
Huang, Moundsview, both of Minn.

Assignee: The Pillsbury Company, Minneapolis,
Minn.

Appl. No.: 339,567

Filed: Apr. 17, 1989

Int. CLS et eeeeene A21D 6/00

US. Cl oot 426/94; 426/243;
426/262; 426/275

Field of Search 426/243, 94, 262, 275,

426/556

US005108770A
(111 Patent Number: 5,108,770
451 Date of Patent: Apr. 28, 1992
[56] References Cited
U.S. PATENT DOCUMENTS
4448791 5/1984 Fulde et al. wornerrrirea, 426/262
4,882,184 11/1989 Buckholz et al. 426/243
4,917,907 4/1990 Kwis et al. cooveverrrscrirrrrsns 426/90

4,968,522 11/1990
4,985,261 1/1991

Steinke et al. ...
Kang et al. ..ccoveviniineeee 426/243

Primary Examiner—George Yeung
Attorney, Agent, or Firm—Kinney & Lange

[57] ABSTRACT

A food product having a browning surface area or
region for developing a desired browning effect during
preparation of the food product for consumption by
microwave irradiation. The food product includes a
starch-based component and a browning system applied
to the component to provide the browning surface area
or region. The browning system includes Maillard
browning reactants for developing the desired
browning effect during microwave irradiation, and a
carrier system which contains the Maillard browning
reactants. The carrier system maintains the Maillard
browning reactants in a substantially reactively immobi-
lized state on the food product prior to microwave
irradiation and while the food product is at temperature
of up to about 40° F. for up to several days.

25 Claims, 30 Drawing Sheets

U.S. Patent Apr. 28, 1992 Sheet 1 of 30 5,108,770

L
WHITE
YELLOW YELLOW ORANGE
GREEN o
+b
GREEN=e- -q +3 — RED
-b
’
BLUE PURPL

U.S. Patent Apr. 28, 1992 Sheet 2 of 30 5,108,770

U.S. Patent ~ Apr. 28, 1992 Sheet 3 of 30 5,108,770

- 100

REDUCING AMINE .
SUGAR SOURCE

GLYCOSYL AMINE
AMADOR! COMPOUNDS

COLORLESS INTERMEDIATES

Fig- 4

MELANOIDINS

Sheet 4 of 30 5,108,770'

Apr. 28, 1992

U.S. Patent

(NN) HLONITIAVM g .m.»nm
00L 009 005 00b

" “ " ——00

JONVLLINSNVYL %
+oov

-0'08

000l

....................... OSW -—====GIN ~—— OW

Sheet 5 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

0,072

(AN) HLONITIAVM
009

00

~0'0¢

~O0P

JONVLLINSNVYL %

009

-0’08

00l

..................

— 0d

Sheet 6 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

L 613

3NWIL XN143Yd

22 ve 1€ 8l m._ al

6

- GO0
LAY
- GI°0

- G20

- €20
- 0

WN Otb

Sv'0

30NV8Y0S8Y

U.S. Patent Apr. 28, 1992 Sheet 7 of 30 5,108,770

9
&
[
=
w
'-—
wn —
> e
w (s
= =
a
= -
(&)
<
i

LAG TIME (MIN)

Sheet 8 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

6-61f, SAVIGINEINI+T SINVLOVRND

ANIL
Oov 0% 1074 Ol 0

1 1) 1 ' L & #& 0

A

J 00l

JONVEHOSaY

Sheet 9 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

JLVNIISVD S8Ve
A3HM Sgvo NIWNGTV SBVe AQS SEVQ NILNTO Sava

NI310Hd OW

NI3104d 9N 'SA WN 02S 3ONVEHOS8Y

oL -61f;

WN 046 'S8Y

Sheet 10 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

- Ol

b
(orfy 0LS 'Sav 3d0T1S@

W9 001/SA1 WO

8 9 14 2 0
. ! L L 02-31L2
[[-30072
L1-300t
L 1-3 009
00 1= XIII'O +26€10-=
I-3 008

NI3LOYd 9N 00I/SAT WO SA
WN 0G. LV 30NVBY0SEV NI310dd 40 3d01S

WN OGS 1v 3ONVEH0sav
NI310¥d 40 3d07S

Sheet 11 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

N13108d WO OOI/SAT W9

ol g 9 b 2 0
: = 0]
4o 2162y
| Log
S3NIVA 1o
109
0L

NI3LOHd WO 00I/SKT WO SA
S3NIVA 1 "3NGQYVO

SANTIVA 1

Sheet 12 of 30 5,108,770

Apr. 28, 1992

U.S. Patént

; 21 "621f,

1-3008

WN 046 1V
3ONVEN0SE8Y NI3LOYHd 40 3d01S

13009 F300v 19002 023UE

SANIVA 10

0oL

WN 0OS 1V 3DONVBYH0SEV NI3L10Hd 40 3d01S

SA S3NTIVA 1 H3NQHVO

S3NTIVA 1

Sheet 13 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

o216 f NIZLOMd WO OOI/SKT W9
o8 9 b2

+ + + + OO

S3NTVA V
SINTVA Vo
ol
660=Y X2.82°2 +IS521-=A
o2

NI3104d W9 O0I/SAT WO SA
S3NTIVA V H3NQMVO

22/6

Sheet 14 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

G2t 614

1-3008

WN O.LS 1V

3ONVEHOSEV NI310Hd 40 3d01S
1-3009 1-300Y 1-3002 0¢-31L2

SANVA v o

460=4 X88lI'02+civ8'| =A

0

Ol

WN OLS 1v 3ONVEH0SEV NI3L0¥d 40 3d01S

SA S3NTIVA V d3NQYVO

S3NTIVA V

Sheet 15 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

5t .hwhv INWA e

1InJS18 ¥3d ANNOJNOD SKWVYHO

m.—N -n-N [—.-N m.-— 1 h-o. [m-n— -n“— 1 —.-— -mpo 1 h--o 1 m.o

4G

O~

-86
6S

!

“TOHLNOD ad3xvd
ATIVNOILN3ANOD

09
-19

~29
~€9
-9
~G9
-99
L9
-89
-69
0L
=1L

el

SANTIVA 1
3SOTAX / NI310Hd AOS
AQNLS SS3NMIIHL 9NI1VOD 11nJSid

ANTIVA 11 UINGHVO FOVHIAV

Sheet 16 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

INIVA € INIVA ¥ /4 £y

11NDS19 ¥3d ANNOWOD SINVH9
[} 60,20, 90

Ge €g I2, 61, 21 Gl ¢l

-8l

JOHLNOD Q3NvE -0
XTTVNOILN3ANOD -22

-2

+ / ’ .._n.wN
+ -92

ot

S3NTIVA 8 ANV YV
3SOTAX/NI310Hd AOS

AQNLS SS3INMOIHL ONILVOD 1INJSig

3NIVA H3INQHVO 39VH3AV

Sheet 17 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

W3.LSAS N3dO -1 3804d
W3LSAS Q3SOTON3 -13808d (93S) 3WIL

00,

002 00]

| dW3L 3804de
| ‘dW3L 3804do

o 61L

—

371dAVS 11N3SIg 39031 101d |

ANWIL SA JHNLVHIdWN3L

AYIHISOWLV 30V4HNS 1indSIg

0.0]

J S$33¥930
JYNLVY3dNIL | 3804d

Sheet 18 of 30 5,108,770

Apr, 28, 1992

U.S. Patent

W31SAS N340 -£ 3804d

W3ALSAS A3SOTON3F-€ 3804d

0,0

(03s) AWIL

omN 00l o

£ dW31 3908d .
¢ dW3l J804de

I nn-ON

ool

&6 61fy

A1dWVS LINJSI8 Y31N30:2 LO1d

J §33493d
3HNIVY3IdN3IL € 3808d

Sheet 19 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

oL .hﬁw INVA 1 HINGHVOo
(SAVQ) 39V 1ONAOHd
oe 02 ol 0
1 ' i 1 I} 1 om
3NVA 1 HINQYYO
09
GI/D/Q\.\\\Q’ ION
—o— ¢
08
06
00l

“GNNOJWOD 3SOAX ‘NIWNE 1V ‘A0S
39V 1ONAOHd ‘A 3MTIVA 71 H3NQHVO

5,108,770

3NTIVA 8 HANQYVO + 3N7IVA V HIANGHVOo

L6y (SAVQ) 39V LONAOHd
1 ﬁv.m O.N i OF_ 1 0 o

Sheet 20 of 30
< N

Apr. 28, 1992

+
/..\-T/L. . I¢N
M TR G 9C

ANNOJWOD 3SOTTAX "NIWNGTV AOS
39V 10NA0Hd ‘A IMIVA 71 H3NGHVO

U.S. Patent

3NTIVA "H3INQYV9

Sheet 21 of 30 5,108,770

Apr. 28, 1992

U.S.- Patent

gt 614y

90

31VNIQHOO0D X
c0 ¢._O €0

S0

ONINMOYE GHV1TIVN 40 S3OVLS SNOIYVA 1V 3SOTAX
HLIM SQIOv ONIWY ¥3HL10O ANV NIWNGTY WNYIS 3NIAOH
40 SNOILNTI0S SNOIYVA 40 WVHOVIA ALIDILVWOYHD 1€6)

3J1VNIQH00D ,A

Sheet 22 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

61 6rfy (4) dW3L

)

HIIvM ~SAET y3ivm Am&o ._mw§>
=l 710 |
180HS 10) \ \ LHOHS ~0v\ LHOHS ow

V. i

S
NV /YN .o JONVHD ¥07109

AHd

4
P
.
L5
P
.
L
:

o
.....

Z

(30) LuoHSH]
(30) 110N
(30) ¥31WWmlYZ
(30) sAxafl | .m

™
FIERAEIERD
AT T

.t B

NOILVYVd3dd 3AVMOYOIW OL ¥Oidd XIS ANV
INO AV 39VHOLS N33IML3IE H0N0D 30v4HNS LINOSIA NI 3ONVHO

Sheet 23 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

0z ‘61£,

(3a) , L4OHS(
(30), 0

(30) ,931vm 4

(30) , SANOER

.A..: dW3l

H3LVM _ H3LVM H31vm
LYOHS . O, \SA¥d, LdOHS O SAHA, 1HOHSA 110 Saud
N\ o))) fodl [/ 0 ;

7

%
rodsed
el g

N

w7,

vz

>

.
Sl

39NVHO 40100

02

39VHO0LS SAVA XIS ¥3ILIV
HOT109 IOV4HNS LINDSIE NI 39NVHD 3AVMONDIW 1SOd O1 3dd

U.S. Patent Apr. 28, 1992 Sheet 24 of 30 5,108,770

2_H o0 SH ertn BH

SCREENDUMP

Sheet 25 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

- o e o
NORIRY o o
-.u.-.. . o9 RATYL
PRI RS AXIY,

oot Qosesds
sy ...n....n....... Siiat

g 3 —",_.;;

RO N

PRI

T
e T

DTN
DR

R .. ae
ORI LA)
i I N S A]
e, ’

..

i G2 . IBEL160 008
S 00S 005 00S 00s

3S01AX/3S00N71 NIWNGTV/AOS
._.zuomun_ AN3JY43d

NIZ1OHIHVONS 3NIL

PR A L T TR RO I LR YOI SRR <t .

U

¥ PREAIA

o
ST

Rt

e
«

BT AR LSS SRR

U.S. Patent Apr. 28, 1992 Sheet 26 of 30 5,108,770

SCREENDUMP:

7
(@)
.
>
X
~
Ll
72
Q
O
-
.
E

3 AN O ROCR PRIV A R T T UL LA 2RS0T TP

Sheet 27 of 30 5,108,770

Apr. 28, 1992

U.S. Patent

31VNIQHO00D X

90 1210 1d¢ €0
Il 1 1 (] - P \No..o
vz b,
JSOTAX =
3SOLONYS -0
3s00N19 o
g0

3INISATT HLIM ONINMOHE QUVTTIVN 40 S3OVLS SNOIYVA
1V SHVONS ONISNG3Y SNOIYVA 40 WVHOVIQ ALIDILVINOYHO Ig6l

31VNIGY00D ,A

U.S. Patent Apr. 28, 1992 Sheet 28 of 30 5,108,770

DE VALUE OVER STORAGE TIME
PRE - MICROWAVE SAMPLES
| TEMP = O°F

204

15

mo

104

U.S. Patent Apr. 28, 1992 Sheet 29 of 30 5,108,770

DE VALUE OVER STORAGE TIME

PRE - MICROWAVE SAMPLES
TEMP =40°F

U.S. Patent Apr. 28, 1992 Sheet 30 of 30 5,108,770

DE VALUE OVER STORAGE TIME
PRE -MICROWAVE SAMPLES
TEMP =T70° F

20-

|5+ | C\

DE 104 C—c

5,108,770

1
PROCESS FOR MICROWAVE BROWNING

BACKGROUND OF THE INVENTION

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

The present invention relates to a process for mi-
crowave-induced food browning, and to a food prod-
uct. Using principles of food science and, more specifi-
cally, the principles of food browning chemistry, a
browning system has been achieved that may be used to
brown select regions of foods upon exposure to micro-
wave radiation. Further, the invention includes a pro-
cess for making a food product using computer, food,
and color science.

A major part of the appetizing appearance of conven-
tionally heated foods is imparted by brown colors de-
veloped on their surfaces during preparation. Consum-
ers have come to expect this appearance and consider it
desirable in a variety of food products including meat,
cheese, and cereal grain based products. It is not nsvally
difficult to obtain a browned appearance using conven-
tional cooking because the reactions leading to brown
colors will proceed for the components comprising the
surface of most foods under conventional baking condi-
tions. However, it has been very difficult to obtain
brown colors on the surfaces of foods prepared in mi-
crowave ovens without using browning devices.

Reasons why surfaces of microwave prepared prod-
ucts do not brown have been suggested (see for exam-
ple, D.C.T. Pei, Baker’s Digest, February 1982). This
reference states that the heat in a conventional oven is
transmitted from the oven environment to the food
surface via convection and transmitted from the surface
to the interior of the product via conduction. This pro-
cess of heat transfer enables the food surface to dehy-
drate and rise above the boiling point of water by the
end of the conventional bake time. Microwaves, how-
ever, penetrate the surface of the product and directly
heat the interior of the product. This induces moisture
transfer to the surface. Evaporation of the moisture
from the surface to the microwave oven environment
usually restricts the surface temperature to a maximum
of about the boiling point of water during the micro-
wave bake time. The resultant surface temperature is
too low to enable the browning reactions to proceed at
the necessary rate with the browning reactants inherent
to the product surface. In addition to the depressed rate
of microwave browning versus conventional browning
due to the temperature conditions, microwave prepara-
tion times are generally much shorter than conventional
preparation times. Therefore, according to the afore-
mentioned reference, the surface conditions and prepa-
ration times, resulting from the basic differences in heat
transfer mechanisms between microwave and conven-
tional heating, create a very difficult problem for those
desiring to effect browning in a microwave oven.

Generally, the solutions to microwave browning can
be divided into the following categories: packaging
aided, cosmetic, and reactive coating approaches. The
first approach involves the use of microwave susceptors
which heat to temperatures exceeding the boiling point
of water and brown surfaces in close proximity or direct

5

20

25

30

35

40

45

50

2

contact (see for example, U.S. Pat. No. 4,266,108). Lim-
itations of commercially available susceptors include
the requirement of close proximity or direct contact,
their generally uncontrolled temperature profile, and
their generally high cost. The second approach is cos-
metic and includes various surface applied formulations
that are brown prior to application (U.S. Pat. No.
4,640,837, and U.S. patent application Ser. No. 251,035
Zimmerman). The third approach involves coating the
surface with a formula that will react to yield a brown
color at the surface conditions described above. Two
such variations of this approach are described in U.S.
Pat. Nos. 4,735,812 and 4,448,791.

The disclosure in assignee’s United States patent ap-
plication for an invention relating to “Color System and
Method of Use on Foods” to Ernst Graf, et al., filed
contemporaneously herewith, is incorporated herein by
reference.

A discussion of microwave heating can be found in
U.S. patent application Ser. No. 085,125 to Pesheck, et
al.

The success of a product approach to browning re-
quires control over the rate of the browning reaction.
During the shelf life of a product, the rate of browning
should be controlled or the product may brown prior to
preparation by the consumer. This is usually unaccept-
able to the consumer. Then, on exposure to a micro-
wave field, the rate should be sufficiently high to brown
the product during the short preparation times gener-
ally encountered with microwave products.

The invention described herein is primarily based on
the chemistry of Maillard browning. Non-enzymatic
browning of this type is well characterized, the litera-
ture on the subject is extensive and it is the most com-
mon form of browning in heated food systems.

There are many reviews of Maillard browning and
associated reactions (e.g., Carbohydrates, In: Food
Chemistry, H. D. Belitz and W. Grosch, Chapter 4,
second edition, 1987, this reference is incorporated by
reference herein). Although the myriad of individual
reactions leading to the development of the brown
melanoidin polymers has been extensively studied, reac-
tions after the initial few steps are not well character-
ized. This complex series of reactions may be divided
into three major categories: the initial condensation of

“the amine and the carbonyl, the formation of colorless

intermediates, and the formation of colored compounds
(e.g., the melanoidin polymers). FIG. 4 illustrates this
highly simplified reaction scheme.

Promotion of browning in a microwave oven is a
difficult problem. Initially, attempts were made to de-
velop a microwave Maillard browning system capable

~ of browning refrigerated doughs (e.g., Pillsbury refrig-

55

60

65

erated buttermilk biscuits). However, as mentioned
earlier, there exist several inherent problems with re-
spect to accomplishing this task (e.g., short cook time,
etc.). One browning system examined employed pectin
gels as the browning agent carrier. Although the gel
system did brown microwave-prepared biscuit dough
samples to a limited extent, the prepared biscuit dough
samples in this study were found to have less than opti-
mal crumb structure and surface texture.

Other food approved carrier systems were used in an
attempt to improve the surface textural properties of the
microwave prepared biscuit samples. Shortening was
found to be preferred due to its ease of manipulation and
broad product system applicability. Biscuit dough sam-

5,108,770

3

ples were coated with a mixture of reducing sugar, soy
protein, and shortening; placed in a microwave oven;
and cooked for a time sufficient to brown the surface.
Unfortunately, it was observed that during the micro-
wave cooking cycle, the biscuit samples became very
dehydrated and overdone. In a further attempt to im-
prove the textural properties of the biscuit samples, the
samples were placed into a sealed plastic pouch prior to
microwave treatment. Surprisingly, the pouched biscuit
samples not only remained moist and soft, but also
browned to a much greater extent in a much shorter
time, when compared to biscuit samples prepared with-
out a pouch.

The disclosure in U.S. patent application Ser. No.
213,013 to K. Anderson, et al. is incorporated herein by
reference. :

These observations led to the conclusion that steam-
containing packaging, and possibly other means of en-
hancing browning, in conjunction with microwave
" browning ingredient formulation, could be used as a
means to control the browning reaction in such a man-
ner as to allow product browning to coincide with
product textural development.

The literature (e.g., Color Science Concepts and
Methods, Quantitative Data and Formulae, G. Wys-
zecki and W. 8. Stiles, John Wiley and Sons, Inc. 1982,
this reference is incorporated by reference herein), indi-
cates that the measurement of color is a very compli-
cated subject.

‘A’Pacific Scientific Gardner XL-20 Colorimeter and
Milton Roy Visible Spectrophotometer were used
throughout the research for this invention. The follow-
ing discussion of the primary responses is based upon
the instruction manual for the Gardner instrument
(Gardner Laboratory Inc., 5521 Landy Lane, Bethesda,
Md.).

Three responses were recorded for a routine color
measurement. L corresponds to a scale defining a range
from black (L=0) to white (L=100). Another value,
a7, defines the range from green (ar= —40) to red
(aL=+40). Finally, b; defines a range from blue
(bL=—40) to yellow (bp=+40). Subsequently, zero
values for az and bz correspond to white, grey, or black
depending on the L value. Hue (type of color: orange,
blue, etc.) and chroma (color intensity: vivid or dull) are
defined by az and bz. FIG. 1, which is from the Gardner

manual, illustrates the three dimensional space describ-’

ing this system.

The L az bz system is only one system of describing
colors. Others include the L a* b* system and the Y x’
y' system. Equations are available to convert from one
system to another.

The L* a* b* system (FIG. 2) is very similar to the L
az bz system in that the same relative scales apply (L* is
white to black, a* is green to red, and b* is blue to
yellow.) The Y x' y’ system (FIG. 3), however, adopts
a somewhat different form. The x' and y’ coordinates
define a point on an irregular portion of an x' y’ plane
that is composed of various colors. The perimeter of
this area is graduated in nanometers corresponding to
the wavelength of the corresponding hue. Both hue and
chroma are defined by x' and y'. Y, a scale running
perpendicular to x’ and y’, is a measure of lightness,
somewhat analogous to L or L*.

SUMMARY OF THE INVENTION

The present invention involves a process for prepar-
ing a system for a microwave food product which

10

15

20

25

30

35

45

50

55

60

65

4
browns during exposure to microwave radiation in a
time sufficient to prepare a food for consumption. The
process includes the steps of: selecting an appropriate
carrier which is effective to inhibit browning during the
manufacture, distribution, and shelf life of the product
(if required), determining the microwave cook time for
desirable texture or temperature, selecting particular
browning agent(s) and controller(s) to yield the desired
browned appearance in an appropriate microwave ex-
posure time, preparing the browning system using these
preselected components, and delivering the system to
the desired or preselected region(s) of the food product.

The present invention further involves a process for
browning a food product during exposure to micro-
wave radiation for a time sufficient to prepare said food
product for consumption. The invention encompasses
alterations in color appearance. Consequently, applica-
tion of the invention involves attaining acceptable tex-
tural characteristics of the target food product during
microwave cooking. When the appropriate formulation
and microwave recipe have been obtained, the inven-
tion described herein can be applied to attain a desirable
browned appearance.

In accordance with one aspect of this invention, there
is provided a food product having a browning region
for developing a desired browning effect during prepa-
ration of the food product for consumption, the food
product comprising:

(a) a starch based component;

(b) a browning system applied to the starch based

component to provide the browning region; and

(c) the browning system comprising Maillard

browning reactants for developing the desired
browning effect during microwave irradiation, and
a carrier system containing the Maillard browning
reactants, the carrier system maintaining the Mail-
lard browning reactants in a substantially reac-
tively immobilized state on the food product prior
to microwave irradiation and while the food prod-
uct is at a temperature of about 40° F. (about 4° C.)
for at least about two days.

The invention further extends to a process for making
a food product which has a browning region for devel-
oping a desired browning effect during preparation of
the food product for consumption by microwave irradi-
ation, the process comprising:

(a) selecting a starch based component;

(b) applying a browning system to a browning surface

area of the starch based component; and

(c) the browning system comprising Maillard

browning reactants for developing a desired
browning effect during microwave irradiation, and
a carrier system containing the Maillard browning
reactants, the carrier system maintaining the Mail-
lard browning reactants in a substantially reac-
tively immobilized state on the food product prior
to microwave irradiation and while the food prod-
uct is at a temperature of about 40° F. (about 4° C.)
for at least about two days (about 48 hours).

The browning region is usually and preferably an
external surface region or area of the food product.
However, where the browning region is within or ex-
tends to within the food product, it may be in selected
areas or regions within the food product or may extend
substantially throughout the food product.

In an alternative embodiment of the invention, only
one of a pair of Maillard reactants may be contained in
the carrier system in a substantially reactively immobi-

5,108,770

5

lized state. Thus, in accordance with this embodiment
of the invention, there is provided a food product hav-
ing a browning surface region for developing a desired
browning effect during preparation of the food product
for consumption by microwave irradiation, the food
product comprising:

(a) a starch based component;

(b) a first Maillard browning reactant applied to the
browning surface area of the starch based compo-
nent;

(c) a second Maillard browning reactant applied to
the browning surface area, the second Maillard
browning reactant being complementary to the
first Maillard browning reactant for reacting there-
with to develop the desired browning effect during
microwave irradiation; and

(d) the second Maillard browning reactant being
contained in a carrier system for maintaining that
Maillard browning reactant in a substantially reac-
tively immobilized state on the food product prior
to microwave irradiation and while the food prod-
uct is at a temperature of about 40° F. (about 4° C.)
for at least about two days.

In accordance with this invention, the carrier system
maintains at least one of the Maillard browning reac-
tants in a substantially reactively immobilized state so
that the reactants will not produce any significant
browning effect during manufacture of the food prod-
uct, during handling and storage of the food product
under appropriate conditions, and preferably during the
freeze/thaw cycles or cooling/heating cycles which are
not unusual in frozen or refrigerated food products after
manufacture of the food products and before they are
heated for consumption by the consumer.

The carrier system is preferably such that the Mail-
lard browning reactants will remain substantially reac-
tively immobilized at temperatures of up to about 40° F.
(about 4° C.) for periods of up to at least about two
days, and preferably up to at least about four to six days.

Preferably, the carrier system is such that the Mail-
lard browning reactants may be maintained in a substan-
tially reactively immobilized state even at temperatures
up to about 70° F. for at least about 2 days, and prefera-
bly for up to about four to six days.

In accordance with a further aspect of the invention,
there is provided a process for making a food product
which has a surface area developing a desired brown
coloration during preparation of the food product for
consumption by microwave irradiation for a predeter-
mined period of time, the process comprising:

(2) preparing a suspension comprising substantially
homogeneous coparticles of reducing sugar and
proteinaceous substance in lipid to produce a
browning suspension; and

(b) applying an amount of the browning suspension to
an area of the surface of the food product, the
amount being sufficient to develop the desired
surface coloration during microwave irradiation of
the food product for the predetermined period of
time.

In accordance with yet a further aspect of the inven-
tion, there is provided a process for preparing a food
product having a browning surface area for developing
a desired browning effect during preparation of the
food product for consumption, the process comprising:

(2) forming a solution comprising water, reducing
sugar and proteinaceous substance, the reducing
sugar and proteinaceous substance being in a ratio

10

20

25

40

45

50

6

effective to produce Maillard browning to a de-

sired degree;

(b) dehydrating said solution to produce a stable
coparticulate browning composition which will
brown when a food product to which it is applied
is prepared for consumption by microwave irradia-
tion for the predetermined period,;

(c) suspending a quantity of the coparticulate
browning composition in a lipid;

(d) applying the lipid to a browning surface area of a
food product; and

(e) storing the food product at a temperature below
about 40° F. (about 4° C.).

The Maillard browning reactants may be reactants of
any appropriate type. The browning reactants may
therefore include aldehyde or ketone-containing carbo-
hydrates (for example, reducing sugars) capable of par-
ticipating in Maillard browning, and amine-containing
ingredients (for example, proteins, peptides, or amino
acids) capable of participating in Maillard browning.

Embodiments of the invention may involve prereact-
ing the Maillard browning reactants to yield substan-
tially or generally colorless Maillard browning interme-
diates, or intermediates which generally match the
color of the food product to which they are to be ap-
plied and which are therefore generally colorless in the
context of their application to a manufactured food
product. The reactants or intermediates may therefore
be generally colorless, or may be “in situ colorless”
where they generally match the color of the food prod-
uct. These are the intended meanings of “colorless” and
“in situ colorless” in the context of this application. The
invention may further involve the formation of homo-
geneous coparticulates of the original reactants and any
intermediates; may involve the formation of heteroge-
neous particles by the adsorption of the browning reac-
tants onto particles (for example, silicates); and may
involve the incorporation of browning controllers.

In some cases, the addition of browning controllers to
affect the rate of subsequent Maillard browning in situ
may be used. Browning controllers may include pH-
adjusting ingredients (e.g., sodium bicarbonate, sodium
hydroxide), phosphate salts (e.g., sodium or potassium
phosphate salts), enzymes (e.g., mutarotase or a prote-
ase), metal ions (e.g., iron and copper salts), steam-
retaining packaging, packaging susceptors, and ioniz-
able salts capable of affecting the dielectric properties of
the browning system in such a way that the temperature
of the browning system is greater, upon exposure to
microwave energy, than when salt is absent.

While this invention relates particularly to a food
product having a browning external surface area to
develop a desired brown coloration during preparation

. of the food product for consumption by microwave

65

irradiation for a predetermined period of time, other
regions of food products may likewise be treated with
the browning system of this invention.

One aspect of the invention may involve preparing a
suspension comprising substantially homogeneous
coparticles of the Maillard browning reactants. The
substantially homogeneous coparticles of aldehyde or
ketone-containing carbohydrate and amine-containing
substances capable of participating in Maillard
browning reactions, may be formed, for example, by
dehydrating an aqueous solution comprising a reducing
sugar and a proteinaceous substance. Such dehydration
can allow some prereaction and can lead to the forma-
tion of particles with the Maillard browning reactants

5,108,770

7

and any subsequent substantially colorless intermedi-
ates, in what can be described as intimate integrated
physical contact. Such coparticle formation can facili-
tate the later Maillard browning reaction by the proxim-
ity and/or prereaction of reactants in situ on the surface
of a food product being prepared for consumption in a
microwave oven. ‘

The browning systems including the Maillard
browning reactants, intermediates thereof and/or
coparticles thereof, are preferably substantially color-
less or the color of the food surface of the food product
prior to preparation for consumption by microwave
irradiation so that the browning surface area of the food
product will develop a desired final browning color-
ation during microwave preparation and not before.
Browning before microwave preparation can often lead
to a lack of consumer acceptance. For this reason, the
carrier system is designed to reactively immobilize or
substantially reactively immobilize at least one of the
components of the browning system (for example, the
amino-containing substance, the aldehyde or ketone-
containing carbohydrates, or water) from the remain-
der.

By “substantially reactively immobilized” is meant

20

that the browning system, when stored for a period of 25

up to two days, at a temperature of 40° F. (4° C.), will
not produce any unacceptable or significant browning
effect, and will generally provide substantially the same
browning potential upon exposure to microwave radia-
tion before storage as it will after storage.

In preferred embodiments of the invention, the Mail-
lard browning reactants are substantially reactively
immobilized so that they will not produce any unac-
ceptable or significant browning effect when stored for
periods of up to about four days, of up to about six days,
or for longer periods under appropriate conditions, at
temperatures of about 40° F., or at temperatures above
40° F. and up to about 70° F.

The aldehyde or ketone-containing carbohydrate
capable of participating in Maillard browning used in
preparing the browning agent of the present invention is
preferably a reducing sugar, more preferably an aldose
or ketose of 3-6 carbons, and most preferably glucose,
fructose, or xylose. The amine-containing substance
capable of participating in Maillard browning is prefera-
bly a proteinaceous substance and is more preferably a
peptide or protein in native or denatured form. Most
preferred proteins include soy protein, egg albumin,
whey protein, and casein. When the protein is dena-
tured to make more chemically accessible its amino
groups, it is preferably denatured by heat, acid, physical
manipulation, or proteolytic digestion. The aldehyde or
ketone-containing carbohydrate and amine-containing
substance capable of participating in Maillard browning
may be present in a weight:weight ratio generally be-
tween about 1:10 and about 10:1 (more preferably be-
tween about 3:1 and 1:3) commensurate with a desired
degree of Maillard browning.

The carrier system of this invention preferably in-
cludes a lipid. Where the food product can provide
sufficient moisture for the Maillard reaction during
microwave irradiation, the carrier system may be free
of moisture to facilitate reactive immobilization of the
Maillard browning reactants. Where the food product
cannot provide sufficient moisture for the Maillard
browning reaction during microwave irradiation of the
food product, the carrier system may include water. In
this aspect of the invention, the carrier system includes

30

35

45

50

55

60

65

8

adsorptive materials (for example, silicate particles) to
adsorb the water and/or the Maillard reactants to main-
tain them in a reactively immobilized state. In an alter-
native arrangement, the Maillard browning reactants
may be maintained in a substantially reactively immobi-
lized state within a hydrophobic carrier system, such as
lipid, with the lipid separating the reactants from the
moisture required during microwave irradiation to pro-
vide the browning effect. A preferred lipid is shortening
of the type commonly used in food products, most pref-
erably a shortening derived from a vegetable oil such as
that from sunflower, corn, safflower, rape seed, soy-
bean, or other plants.

The prereaction of an aldehyde or ketone-containing
carbohydrate and amine-containing substance capable
of participating in Maillard browning under conditions
facilitating reactions leading to Maillard browning gen-
erally involves an aqueous environment, a neutral to
alkaline pH, and sufficient heat (e.g., 50° C.-100° C.) to
facilitate a Maillard reaction. The reaction should be
halted before a noticeable difference in visible color is
observed when the above said agents are applied to the
product system. This halting of the reaction may be
accomplished by lowering the temperature (e.g., to
between 0° C. and 10° C.), but could also be done by
other means such as removal of water.

Substantially colorless browning systems are pre-
ferred since they can be associated with any product.
However, it is to be understood that “colorless” in situ
is more important since the browning system should not
change the appearance of the substrate when the system
is in place prior to microwave cooking. As an example,
a cookie dough or wheat bread dough system can have
a prebrowned system applied that is “colorless” on the
product.

Preferred carriers include lipids (shortenings, oils,
and waxes), water, water-lipid emulsions or polyols
such as glycerol, and emulsions of silicate particles to
adsorb and thus isolate the reactants. The preferred
carriers substantially reactively isolate the browning
agents and thus prevent or retard development of a
browned appearance prior to exposure to microwave
radiation. Isolating the browning agents can also be
attained by freezing a product coated with an aqueous
slurry of browning agents and possibly controllers to
yield an ice matrix as a carrier when used in a reliably
controlled frozen distribution system. Another aspect of
the carrier is that it may be selected to provide
browning on a high or low moisture product.

This invention further extends to a method of produc-
ing a food product with a preselected color in a prese-

lected region of the food product, said method compris-

ing:

(a) selecting at least one parameter from a group
comprising: color producing agent, heating time
value, agent concentration value, final food color
value, substrate color;

(b) inputting said selected parameter into computer
means programmed with a functional relationship
between said selected parameter and at least one of
the other said parameters and operable to provide
output information about at least one of the other
said parameters;

{c) making a food product in accordance with said
output information;

(d) heating said food product; .

5,108,770

9

(e) and wherein said color producing agent assists in
approximately producing said final food color
value in a preselected region of said food product.

The output information may include a final food

product color that includes hue and chroma and said
selected parameter may be at least one of a color pro-
ducing agent, heating time value and agent concentra-
tion value.

The selected parameter may include a final food °

product color value that includes hue value and chroma
value and said output may include at least one of a

parameter selected from a group comprising color pro-

ducing agent, heating time value and agent concentra-
tion value.

In the method, the computer means may include
color graphics output means, and the method may com-
prise adjusting the final food product color value on the
color graphics output means until a desired color is
achieved, and outputting information from said com-
puter means relating to at least one of said parameters.

The method may comprise comparing a preselected
colored sample to color on the color graphics display
means and adjusting the color on said colored graphic
display means to approximately match the color of said
sample.

Further in accordance with the invention, a method
for producing a food product having a desired color,
comprises the steps of:

(a) using computer means to display color for a food
product as a function of at least one of the follow-
ing parameters: a browning agent selected from the
group comprising proteins and reducing sugars or
prereacted browning intermediates thereof, con-
trollers selected from the group comprising metal
ions, salts, enzymes, pH adjusting agents, steam
retaining packaging, carriers, and microwave ex-
posure time of the food product;

(b) selecting a desired color for the food product and
adjusting one or more of said parameters, if neces-
sary, to provide adjusted parameters which pro-
duce a computer color display of the desired color
using said computer means; and

(c) preparing a food product in accordance with said
adjusted parameters.

The invention further extends to a method of produc-
ing a food product with a desired color in a preselected
region of the food product, said method comprising:

(a) selecting at least one parameter from a group
comprising color producing agent, agent concen-
tration value, hue value and chroma value;

(b) inputting the selected said parameter into an input
means operatively associated with a programmed
processor means having a program in memory
means operatively associated therewith for com-
puting an output parameter comprising at least one
of the nonselected said parameters based upon a
functional relationship between the selected pa-
rameter and the output parameter;

(c) outputting said output parameter from output
means operatively associated with said pro-
grammed processor means; and

(d) making a food product in accordance with said
selected parameter and said output parameter.

The invention further extends to a programmed com-
puter means adapted to output food color information,
said computer means including:

15

20

25

30

45

50

10

{a) a processor means operable for manipulating at
least a portion of first color information and out-
putting second color information;

(b) input means operably connected to said processor
means and operable for inputting information to
said processor means;

(c) display means operably connected to said proces-
sor means and operable for displaying said second
color information; and

(d) memory means operably connected to said pro-
cessor means for storage of information used by the
processor means, said memory means storing third
information relating food preparation to food prod-
uct color.

In an embodiment of the invention, the third informa-
tion may include a portion of time a color agent is asso-
ciated with a food product.

The color agent may include a browning agent, and
the browning agent preferably includes Maillard
browning reactants or intermediates.

The invention also extends to a programmed com-
puter means for determining how to prepare a food
product to produce a predetermined desired color,
comprising:

(a) input means for receiving input signals which are

indicative of parameters that determine the color of
a food product when it is heated;

(b) programmed memory means which is pro-
grammed to functionally relate a desired color of a
food product to parameters that determine the
color of the food product when it is heated;

(c) processor means operatively associated with the
input means, the processor means being operative
to receive input signals which are indicative of
parameters that determine the color of a food prod-
uct when it is heated, the processor means being
operatively connected to the programmed memory
means, the processor means being operative to
produce output signals indicative of the color of a
food product when it is heated where the food
product is made in accordance with such parame-
ters; and

(d) output means operatively associated with the
processor means, the output means being respon-
sive to output signals from the processor means, the
output means being operative to display informa-
tion indicative of the color of the food product
when it is heated.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically shows the three-dimensional

" space of the L a; by system for color evaluation.

55

65

FIG. 2 schematically shows the three-dimensional
space of the L* a* b* system for color evaluation.

FIG. 3 schematically shows the three-dimensional
space of the Y x' y’ system for color evaluation.

FIG. 4 schematically illustrates a simplified overall
Maillard browning scheme.

FIG. 5 depicts the changes in transmittance (from 400
to 700 nm) for moist biscuit samples after treatment
with low (M0), medium (M15), and high (M30) mois-
ture browning systems.

FIG. 6 depicts the changes in transmittance (from 400
to 660 nm) for dry biscuit samples after treatment with
low (D0), medium (D135), and high (D30) moisture
browning systems.

FIG. 7 illustrates a lag phase for color development
in the Maillard reaction.

5,108,770

11

FIG. 8 shows that the lag phase in the Maillard reac-
tion is temperature dependent.

FIG. 9 shows that prereaction of Maillard reactants
substantially reduces the lag phase in color develop-
ment.

FIG. 10 illustrates the linear relationship between
concentration of protein sample and ninhydrin color
development.

FIG. 11 shows a linear relationship of protein lysine
content and ninhydrin color development.

FIG. 12A shows relationships between Gardner L
values from biscuit samples and protein lysine content.

FIG. 12B shows the relationship between Gardner L
values from biscuit samples and the slope of the linear
relationship between ninhydrin chromosphore absor-
bance and protein concentration.

FIG. 12C shows the relationship between Gardner
az values for biscuit samples and protein lysine content.

FIG. 12D shows the relationship between Gardner
az values and the slope of the linear relationship be-
tween ninhydrin chromophore absorbance and protein
concentration.

FIG. 13 shows the relationship of Gardner L values
and biscuit coating thickness.

FIG. 14 shows the relationship of Gardner a; and by
values and biscuit coating thickness.

FIG. 15A shows surface or internal temperature pro-
files for biscuits heated by microwaves in an open sys-
tem.

FIG. 15B shows surface or internal temperature pro-
files for biscuits heated by microwaves in a closed sys-
tem. '

FIG. 16 shows shelf life performance in terms of
resultant Gardner L values of the browning coating on
refrigerated biscuits.

FIG. 17 shows shelf life performance in terms of
resultant Gardner az and by values of the browning
coating on refrigerated biscuits.

FIG. 18 shows a 1931 chromanclty dlagram of bo-
vine serum albumin (BSA) and various amino acids at
different stages of Maillard browning with glucose.

FIG. 19 shows changes in biscuit surface color be-
tween storage day 1 and 6 at 0° F., 40° F. and 70° F.
prior to microwave preparation.

FIG. 20 depicts pre-to-post microwave change in
biscuit surface color after 6 days storage.

FIG. 21 shows an example of the triplet patch
browser computer display.

FIG. 22 shows an example of the gauge browser
computer display.

FIG. 23 shows an example of the N by N color patch
browser computer display.

FIG. 24 shows a 1931 chromaticity diagram of vari-
ous reducing sugars at various stages of Maillard
browning in reaction with lysine.

FIGS. 25, 26, and 27 compare certain shelf life studies
performed with a food product treated in accordance
with this invention (identified as “P”), and a food prod-
uct prepared in accordance with an embodiment se-
lected from U.S. Pat. No. 4,448,791 (identified as “C”),
when stored at 0° F. (—18° C.)—FIG. 25, when stored
at 40° F, (4° C.)—FIG. 26, and when stored at 70° F.
(21° C.)—FIG. 27. The graphs of FIGS. 25-27 plot DE
vs. days. DE is a parameter which is identified as the

“color change” and describes the magnitude of the

difference between the color of the brown surface area
of the food product at day O and any given day.

10

20

25

30

35

45

50

55

65

12

DETAILED DESCRIPTION

Unless otherwise specified, all percents reported
herein are by weight.

In one preferred embodiment of the present inven-
tion, a preferred preliminary step involves prereacting
an aldehyde-containing or ketone-containing carbohy-
drate and an amine-containing substance capable of
participating in Maillard browning under conditions
initiating a Maillard reaction scheme. This prereaction
involves the substantial completion of preliminary
chemical reactions affecting the rate of Maillard
browning, but most preferably does not result in the
development of visually noticeable colors, or results in
a substantially colorless product as defined. Amine loss
can be measured by HPLC to indicate degree of reac-
tion.

A preparation comprising reducing sugar and an

‘amine-containing substance capable of participating in

Maillard browning may also contain mutarotase to cata-
lyze the formation of sugar forms which are more reac-
tive in the Maillard reaction. A preparation comprising
an aldehyde or ketone-containing carbohydrate and a
protein may also contain a protease to increase the num-
ber of reactive amino groups thereby facilitating the
Maillard reaction. The inclusion of phosphate or car-
bonate, for example as a potassium or sodium salt, may
also be used to accelerate the Maillard reaction.

The invention thus involves a process for browning a
food product during exposure to microwave radiation
for a time sufficient to prepare said food product for
consumption. This includes subjecting a food product,
prepared as described above, to microwave heating for
a time sufficient to prepare said food product for con-
sumption. The process of the present invention may
additionally involve storing the browning system or
treated food product at temperatures low enough to
inhibit a browning reaction in the applied browning
system.

The aldehyde-containing or ketone-containing ingre-
dient is generally an aldose or ketose having 3-6 car-
bons per molecule, most preferably is glucose, fructose,
or xylose. The process of the present invention may, for
example, involve a reducing sugar selected from the
group consisting of glyceraldehyde, xylose, glucose,
mannose, galactose, ribose, dihydroxyacetone, arabi-
nose, and fructose. Although one or more amino acids
may be used to react with the reducing sugar to facili-
tate Maillard browning, a protein or protein mixture is
preferred. A protein, for example, may be egg albumin,
cereal protein, whey, casein, soy protein, and/or mix-
tures thereof. Hydrolyzed proteins or peptides may also
be used.

The carrier of the present invention may be any sub-
stance capable of delivering browning agents to the
product system while preferably retaining them reac-
tively immobilized, and preferably includes a lipid. Pre-
ferred lipids include shortening such as an animal, vege-
table, synthetic fatty substance or wax used in foods but
more preferably consists essentially of shortening and
oils derived from a vegetable oil such as soy oil, cotton-
seed oil, safflower oil, corn oil, rapeseed oil, sunflower
oil, or a combination thereof. The carrier system may
also comprise a water-lipid emulsion, or a polyol such as
glycerol.

Food products particularly usable with the present
invention include imitation cheese, dairy products such
as cheese, and starch-based products such as biscuits,

5,108,770

13

sweet rolls, cake, bread, french toast, pizza crust, pota-
toes and products made from comminuted foods such as
wheat flour and corn meal.

Most preferably, the food product is a dough-based
product or dough-like product (hereinafter referred to
as dough-based product) such as biscuits, cookies,
breads, pastries, pie crusts and their precursors; or bat-
ter based products such as cakes, cookies, cupcakes,
muffins, pancakes, and waffles. The present invention is
usable with food products with any browning system-
treated surface dimension, which surface increases by
20% or more sometime over the history of the product
(e.g., during manufacturing, storage, cooking and heat-
ing).

Applicants have also found that food products in the
form of biscuit dough samples, when treated with a
browning system in accordance with this inyention, also
brown satisfactorily when cooked in a conventional
oven. .

Due to the broad application of the browning systems
described herein, a model system was developed that
could be used to rapidly screen variables with respect to
color development. This model system allowed the
effects of variables upon browning rates to be readily
evaluated. ’

Filter papers with an applied browning formulation
were used as a rapid screening tool and were found to
correlate well to food product systems. Even better
model system/product correlations could be obtained if
color measurement backplates corresponding to a par-
ticular product’s optical properties were identified and
used, but are not required.

Using the model system and two food systems (bis-
cuit dough and cake batter), statistical models were
developed to aid in the selection of some preferred
browning agents and enhancers.

For the model system, a browning system coating
was spread over five water-wetted filter papers which
were then microwaved for desired times. Their color
was recorded with a Gardner colorimeter using a white
background plate.

1.7 grams of browning coating was spread onto the
top surface of each of nine biscuits (top surface area=23
cm?/biscuit) which were then microwaved inside a
steam-retaining pouch for 2 minutes. After completion
of the microwave cycle, the biscuits were kept inside
the pouch for 2 minutes. Gardner color measurements
were made on all but the center biscuit.

For cakes, 7 grams of browning drys 1:1 (protein:
reducing sugar) were dusted onto a pregreased (7 grams
of Crisco shortening) microwave cake pan (surface area
531.4 cm?). Pillsbury Microwave Yellow Cake batter
was deposited in the pan and microwaved for 6.5 min-
utes. Four color measurements per cake were then
taken using a Gardner colorimeter.

A Box-Behnken type design was chosen to study the
effect of varying microwave time, albumin, soy, xylose,
glucose, and sodium bicarbonate on the developed
brown color of microwaved filter papers (measured by
Gardner L a; by values).

The variables and their limits are given below:

TABLE 1
GLU-
VARI. MW SUGAR: SOY: COSE: SO-
ABLE TIME PROTEIN ALBUMIN XYLOSE DA
NAME (SECS) (RATIO) (RATIO) (RATIO) (%)
CODE A B c D E

20

25

30

45

50

14
TABLE 1-continued
GLU-

VARI- MW SUGAR: SOY: COSE: SO-
ABLE TIME PROTEIN ALBUMIN XYLOSE DA
NAME (SECS) (RATIO) (RATIO) (RATIO) (%)
-1 40 0.2 0.0 0.0 0.0

0 80 1.0 1.0 1.0 2.5

+1 120 5.0 infinity infinity 5.0

1) Litton Generation 11 microwave oven.
2) Sugar(s) + Protein(s) = 50% of total formuiation.
3) 9% Oil = 509% — % Soda. -

The accuracy of the generated predictive model
equations, as measured by the r-square value is:

L=0.91 az=0.86 by =0.78 (n=156 runs)

The generated predictive equations for L, az, by for
the model system are:

L = 73.7292 — 8.3927(4) — 4.4667(B) — 1.5982(C) +
2.1045(D) — 5.546%(E) — 5.4750(BE) + 4.3002AXD) +
2.7434(B)? — 2.3659(ANE) + 3.1124(4)C) — 2.5482(C)D) +
1.2451(D)? + 1.6531 (E)2 — 1.4267(DXE) + 1.8850(B}C) —
1.8200(AXB)

ap = 6.8605 + 4.1416(4) + 2.5350(B) — 0.2513(C) —
0.9071(D) + 2.8294(E) + 3.6075(BXE) — 2.9141(4XD) —
1.6313(B)? — 1.9742(4XC) + 1.6255(C)(D) — 1.1568(E)? +
1.1257(DXE) — 0.8210(D)? — 0.8087(C)(E)

by = 26.3620 + 2.3819(4) + 0.7850(B) — 1.4763(C) —
. 2.2132(D) — 0.2482(E) + 4.2300(A)(B) — 2.8568(B)? +
2.1625(B)E) — 24279(AYE) + 2.425%(C)D) — 2.0503(4)(C) —
2.6300(BY(D) ~ 1.8540(D)? — 1.8490(4)2 + 1.3448

Where

A =microwave time (seconds)

B=sugar/protein ratio

C=so0y protein/albumin ratio

D =glucose/xylose ratio

E =sodium bicarbonate (%)

Two statistical methods were used to incorporate
model system information into product color predictive
equations:

Method I: The slope and intercept of actual product
color versus actual filter paper color is obtained for
their corresponding browning formulations using the
“error in both variables” method. This is a statistical
method similar to the commonly used “least squares”
method for fitting linear relationships. It includes, how-
ever, a treatment to incorporate variation in the x vari-
able in addition to the y variable. This intercept and
slope serve as the constants for an equation of the type
y=mx+b where x is the color value predicted from the
model system design equation and y is the predicted

~ product color.

55

60

65

Method II: The actual product color is incorporated
into the model system design as a new independent

“variable. This new variable was designated F and takes

the coefficient of —1 when it refers to the model system
and +1 when it applies to the product.

Fifteen browning formulations were run on biscuit
dough samples to study the browning reaction of vari-
ables B, C, D, and E previously studied in the model
system. Variable A, time, was excluded due to the fact
that the product system has a fixed microwave cook
time.

Thirteen browning formulations were run on cake
batter samples to study the browning reaction of vari-
ables B, C, and D previously studied in the model sys-

5,108,770

15

tem. Variable A, time, was excluded for the reasons
mentioned previously.. Variable E, soda, was excluded
because it creates brown specks in microwave cakes.

Both statistical methods (I and 1I) were used to incor-
porate the model system information as an aid in the 5
development of product color predictive equations.
The accuracy of the color predictions using the statisti-
cal methods (I and II) can be expressed as the overall
standard deviation of the difference between the pre-
dicted ‘product color and the actual product color. 10
Table 2 below summarizes this information:

TABLE 2

COOKED BISCUITS

Gardner Values
Standard Deviations

L ay bz

4.2 24 2.8
3.1 1.2 24

15
Number

of Runs

15
15

Method I
Method 11

20
Method I1 also reports an r-square value for the com-
plete design equation (n=73, 58 filter papers and 15
biscuits) as follows: L=0.96; a; =0.90; by =0.72.
The generated predictive equations for L, a7, and bz
for the biscuit system are: 25

L = 65.1715 — 8.4162(4) — 7.5052(B) — 0.2301(C) +
4.8245(D) — 6.1878(E) — 8.4143(F) — 5.4750(BXE) +
4.1348(AXD) + 2.2306(D)F) — 3.0385(B}F) — 2.3307(ANE) +
2.2960(B)° + 1.5160(D)? + 3.0317(AXC) — 2.0016(CKD) +
1.6427(CKE) + 1.5150(E)? + 1.8850(B)C) — 1.8200(4)B) —
0.8322(DXE)

30

ap = 9.3443 + 4.1364(4) + 3.7612(B) — 0.4329(C) —

2.3756(D) + 2.8541(E) + 2.4114(F) + 3.607S(BXE) —
2.7354(AXD) — 1.3632(DXF) + 1.0836(DXE) — 1.9408(4ANC) —
1.2176(CKE) — 1.2869%(E)* — 1.3640(B)? — 0.9825(D)* +

LO73HCKD) + 1.2262(B)(F)

br = 26.5557 + 2.3494(4) + 0.413%(B) — 1.055%(C) —

1.6218(D) — 0.7297(E) + 0.377%(F) + 4.2300(AXB) +
1.9762(D)E) — 2.8372(B)? — 2.3792(AXE) ~ 2.0822(4)? —
1.7320(DY + 1.8841(BYE) — 2.6300(BYD) + 1.8205(CXD) —

' 2.647(AXO)

35

40

Where

A =microwave time (seconds)

B=sugar/protein ratio

C=soy protein/albumin ratio

D=glucose/xylose ratio

E=sodium bicarbonate (%)

F= +1 (for biscuits; an input of —1 will yield a pre-
diction of model system values) 5

TABLE 3

COOKED CAKES
Gardner Values

45

Standard Deviations Number 5'5
L ar br of Runs

Method 2.6 2.0 1.2 13

Method 11 24 1.7 1.5 13

Method 1I also reports an r-square value for the com- 60
plete design equation (n=71, 58 filter papers and 13
cakes) as follows: L=0.91; a; =0.84; b, =0.83..

The predictive equations for L, as, and by for the

cake system are:
65

L = 67.9230 — 8.3560(4) — 4.3888(B) — 1.5775(C) +
2.1958(D) — 5.6057(E) — 6.3698(F) — 5.5917(BXE) +
4.1804(AXD) + 2.5173(B) — 2.4211(AXE) + 2.8752(AXC) —

16

-continued
1.3210(CXD) + 1.5362(BXC) + 0.9396(D)? — 1.8200(4A)B) +
i 1.2811(E)® — 1.1212(DXE)

ap = 8.5680 + 4.0798(4) + 2.4954(B) — 0.3304(C) —

1.1262(D) + 2.8549(E) + 1.8608(F) + 3.6670(BXE) —
2.7471AXD) — 1.7792(B) — 1.9441(AXC) + 0.9318(CXD) +
1.0565(DXE) — 1.0105(CKE) — 1.0610(E)* — 0.8462(BYC) —

0.5450(D)?

by = 30.1557 + 2.3504(4) + 1.9159(8) — 0.7553(C) —
0.6540(D) — 0.1255(E) + 3.9003(F) + 4.2300(AXB) —
2.6023(B)? + 1.5747(DXF) — 2.3806(AXE) — 1.8550(A); —
1.5176(D)2 + 2.1625(BXE) + 1.1309(BXF) — 1.9772(ANC) +
1.3757(CXD) + 1.2645(DXE) — 1.1994(BXD) + 0.5272(CXF)

Where ‘

A =microwave time (seconds)

B=sugar/protein ratio

C=so0y protein/albumin ratio

D=glucose/xylose ratio

E =sodium bicarbonate (%)

F=+1 (for cakes, an input of —1 will yield a predic-

tion of model system values)

For both product systems studied, Method 11 was
chosen over Method 1 because it generated predictive
equations with better accuracy. Other product systems
might yield better predictive equations with Method I.

The statistical approach described above is very flexi-
ble with respect to incorporating other browning agents
and browning controllers. It is also very adaptable to
other product systems. This can be accomplished using
either Method I or Method II described above.

The equations developed using the statistical proce-
dure described herein are not limited to the examples
given above and can be used with other food products
and browning system components: In addition, these
equations can be used in conjunction with a computer
program and the appropriate computer hardware, to
display the predicted brown color of a selected
browning system on a computer screen. This enables
the actual visual perception of the predicted color. This
is more useful to those unskilled in color science who
design microwave food products than the values associ-
ated with color measurement (e.g., L az bz).

For example, the equations above developed for the
model system, biscuits, and cakes were incorporated
into 2 computer program that.enables the color of the
resultant browning formula to be displayed on a com-
puter monitor.

The computer used was an Apple MacIntosh ™™ -I1

0 with 5 megabytes of main memory, a Spectrum T™M

display (1024768 x8) board and 19" Spectrum T™™
monitor.

The computer software was ParcPlac TM Smalltalk-
80 V12.2/VM1.1 with Knowledge Systems Corpora-
tion Pluggable Gauges TM package. Various software
fragments supplied by ParcPlace as “Goodies” were
incorporated in the “Color” section of the program.

These software packages running on the above hard-
ware provide basic systems functions to which are
added the See Lab functions which provide interactive
color synthesis capability.

The computer program is Smalitalk code. The lis-
tings for the Smalltalk code that comprises See Lab are
provided at the end of this specification.

For best results, the computer monitor should be
calibrated and adjusted for ambient lighting to generate
light psychophysically equivalent to the actual color.
This is accomplished by methods outlined by William

5,108,770

17

Cowan and Colin Ware in their Tutorial: “Color Per-
ception” of SIGGRAPH °84 conference (available
through the Association of Computing Machinery).

As described herein, the color system used was the
Gardner L a; by system. However, it is to be under-
stood that other tri-stimulus value color measuring sys-
tems can also be utilized and can be easily accommo-
dated in the computer system or the method as de-
scribed herein. These other color systems include Yx'y’,
CIE L ab, XYZ and RGB. These different color mea-
suring systems can be correlated to one another as set
forth in Color Science discussed herein. The systems are
interchangeable. Further, the method of making a col-
ored food product and the computer system can be used
for other desired food colors in addition to browning.

A food product can be made with a preselected color

in a preselected region of a food product by including -

the following steps:

(a) using a food preparation parameter which can
include either food formula information, for exam-
ple, the component parts of the food; color produc-
ing agent; agent concentration value; carrier type;
final food color value, which may include one or
more of the three tri-stimulus values e.g. L ay bz,
hue and chroma; substrate color; color controller
information; and can include food processing con-
ditions, for example, heating time, mixing condi-
tions, pretreatment agent/controller, particle sizing
and coating parameters;

(b) inputting information about one or more of the
above-described parameters into a computer means
that is programmed with a functional relationship
between the selected parameter(s) and one or more
of the other parameters. The computer means is
operable to provide output information about at
least one of the other said parameters;

(c) displaying output information from the computer
means by a color graphic display means e.g. a CRT
or print output, for example the L a; by numbers or
actual colors;

(d) adjusting the color graphic display means to com-
pensate or to calibrate the screen for the particular
computer system and color graphic display means
so that uniformity of color from system to system
can be accomplished; and

(e) utilizing output information from the computer
means in making a food product in accordance
with the output information.

While the process of this invention is particularly
suitable for use in preparing food products for consump-
tion by subjecting them to microwave irradiation, the
process can also be applied to food products which are
to be prepared for consumption by cooking or baking in
conventional ovens and systems.

Further adjustings in the process can be done in ac-
cordance with the one or more of the preceding steps
until a final color which is desired or preselected is
achieved on the food product. The parameters need not
necessarily be adjusted if they were properly prese-
lected initially. The thus made food product is heated or
otherwise processed to achieve the desired or prese-
lected color. The color producing agent assists in pro-
ducing the approximate preselected color in the final
food product in a preselected region of the food.

The computer means includes a processor means
which is operably connected to an output means, for
example a color graphics display means or a printer or
the like for providing output color information. An

20

25

30

45

50

55

60

65

18

input means is operably connected to the processor
means. An input means can be a keyboard or the like or
a color measuring device.

Generally, the processor means and the memory
means are a suitable digital computer such as an Apple
MaclIntosh-11 T™, and the color graphic means can be a
color CRT and controller.

The processor means is operable for manipulating
input color information from the memory means. It can
by selection of the operator manipulate one or more of
the food preparation parameters. The memory means
stores information which can include a functional rela-
tionship between one or more of the above-described
food processing parameters and formula parameters and
preferably receives information from the input means.
Any of the above-described parameters can be utilized
as input in order to provide output color information.

Functional relations can be determined by using the
statistical approach as discussed.

The computer system is particularly useful with Mail-
lard browning agents and/or intermediates.

The information stored in the memory means can
include color information about a food product prior to
heating or formation and after heating.]

The processor interprets the input from the memory
means or the input means and uses an algorithm and
stored data to produce output information.

A feature of the present invention is that in the
browning system and other color systems, food color-
ing builds pigments in situ during formation and/or
heating of the food product. A paint system, for exam-
ple, has a pigment formed prior to introducing into a
carrier system. Further, food substrate color, before
and/or after heating, should be included in the evalua-
tion because of the somewhat transparent nature of the
formed color. The food substrate can affect the final
food product color. Further, another important feature
of the present invention is that it can predict color of a
food product as it changes with time or time and tem-
perature or perhaps more accurately total heat input.
Current color predicting computers (like those used for
paint) do not concern themselves with how color
changes with time or temperature. Further, the present
invention can also accommodate pigments and dyes as
color agents. Another complication for food systems is
that a color agent can migrate into or from an initial
position in the food product substrate.

In order to facilitate the more rapid development of
browning, the use of prereacted typical browning ingre-
dients was studied and found to be feasible. It is well
documented that the complex Maillard browning reac-
tion proceeds through many steps prior to color devel-
opment. When a prereacted but substantially colorless
mixture of reducing sugar and amino acid and their
reaction products, prepared as described below, was
applied to a surface and subjected to microwaves, it was
determined that browning was achieved sooner than
when the same ingredients, but not prereacted, were
analogously used.

A study of a model system with glutamine and glu-
cose was conducted. Through reaction of these two
compounds in solution, it was observed that a lag phase
in color development occurred (FIG. 7). In this system,
at 100° C,, the colorless lag phase was about 6 minutes.
It was determined, by running this reaction at various
temperatures, that the lag phase was temperature de-
pendent (FIG. 8). More important to the objectives of
this invention, the lag phase could be eliminated for in

5,108,770

19

situ browning. A sample of the reactant solution was
heated to a point just prior to development of measur-
able browning. The reaction was then radically slowed
by rapid cooling. This prereacted solution was com-
pared to a dissolved reactant solution by spectrophoto-
metrically measuring color development with time at
100° C. The results clearly indicated that the lag phase
was eliminated in this manner (FIG. 9).

The reduction of lag time in color development with
prereacted as compared to non-prereacted systems was
noted. A precipitate formed when ethanol was added to
a prereacted solution. Comparing the browning devel-
~ opment of these precipitates to the browning develop-
ment of the relative initial reactants under controlled
microwave conditions indicated significantly higher
browning for the prereacted samples.

To determine whether prereacted solutions could aid
in the microwave browning of specific food products,
tortillas and pizza crusts were evaluated. Prereacted
solutions of glutamine and glucose were applied to
surfaces of the products. Solutions of the initial reac-
tants were similarly applied to control products. Objec-
tive color evaluations of the two types of samples
showed significantly higher browning for the prere-
acted samples for both pizza crusts and tortillas. See
Tables 4 and 5 below.

TABLE 4
TORTILLA SAMPLES
Prereacted Initial Untreated
Reactants Reactants Control
L 729 78.9 81.6
EYR —-0.5 -1.8 —16
by 15.6 13.2 12.1

All scores are statistically different with a confidence
level of 99.99%

TABLE 5
P1ZZA CRUST SAMPLES
Prereacted Initial Untreated
Reactants Reactants Control
L 51.9 57.0 64.3
ar 53 4.1 2.0
by 17.3 17.1 19.4

All scores are statistically different with a confidence
level of 99.999% (except bz value prereacted versus
initial reactants).

The term “‘coparticulates™ as used herein describes
formation of uniform particles containing two or more
browning agents. Such coparticulates may be prepared
by first dissolving or suspending the Maillard browning
reactants in water. After such reactants, for example,
albumin and glucose, are dissolved or suspended, the
mixture is then substantially dehydrated, for example,
by lyophilization or spray drying. The dry matter left
after lyophilization or spray drying is preferably ground
to produce a fine powder. This fine powder, which
contains the protein and reducing sugar in an intimate
physical relationship and/or prereacted state, is then
usable to provide Maillard browning in a desired period
of time. Such coparticulates may be suspended in a
carrier and applied to a food product. The carrier serves
to substantially reactively isolate the coparticulate reac-
tants from water so that Maillard browning does not
immediately ensue. When the suspension of coparticu-
lates is applied to a food product and microwave energy
is applied, the coparticulates are exposed to water from

A¥.)

10

15

20

25

30

40

45

50

60

65

20

the food product and undergo Maillard reactions lead-
ing to browning. Such coparticles contain the reactants
in an intimate physical relationship and/or prereacted
state so that they may further react upon exposure to
heat and moisture. When the reactants are present but
are not intimately associated and/or prereacted, the in
situ Maillard browning reactions are hampered even
though moisture may be present. Many of the compo-
nents of the present invention (e.g., the various protein-
aceous substances and reducing sugars) may-be utilized -
as coparticulates to control browning of microwave-
prepared food products. It may be viewed that the
protein acts as a “sponge” for reducing sugar in aqueous
solution during as well as after lyophilization. Polarized
light microscopy of coparticles indicates a homogeneity
of structure.

Browning “drys” are individual particles of Maillard
reactants which have never been mixed in liquid form.
These dry particles may be suspended in a lipid and
applied to a food product. Upon microwaving, the
*“drys” brown more slowly than corresponding prere-
acted intermediates or coparticles. This may make such
a system useful where long periods of microwave expo-
sure are required to prepare a product. The use of
coparticulates is more effective than the application of
“drys” for food products requiring - more rapid
browning.

Another similar embodiment of the present invention
involves the formation of particles of browning agents
and browning system insoluble adsorptive particles
such as heterogeneous silicate particles to which
browning agents have been adsorbed. Specifically, said
browning particles may be formed by blending an aque-
ous solution of browning controlier (e.g., potassium
phosphate), protein (e.g., whey), and reducing sugar
(e.g., xylose) with calcium silicate until a smooth paste
is produced. The above paste can then be suspended in
a carrier system., such as shortening and glycerol, and
applied to a food product. By adsorbing the browning
agents or reactants onto a particle, the local concentra-
tion of browning agents is effectively increased. Ad-
sorbed water promotes browning agent solubilization
during microwave heating, thereby increasing the rate
of Maillard browning. The silicate particles, by adsorb-
ing the Maillard browning reactant and the water, have
the effect of retaining them substantially reactively
immobilized in the carrier system so that no significant
browning effect will occur prior to microwave irradia-
tion. Browning may be adjusted by varying the amounts
of reducing sugar, protein, and water adsorbed to the
silicate particle. Several other support particles were
found suitable to effect browning, including silicon

,dioxide (such as Cabosil, Zeosyl, and Zeothix) and so-

dium aluminum silicate (such as Zeolex).

The coparticulate and silicate approaches to
browning have proven to be superior to the application
of drys. Many of the components of the present inven-
tion (e.g., the various proteinaceous substances and
reducing sugars) may be utilized in a particle containing
system to effect browning of microwave heated food
products.

It was observed that browning reaction rates were
increased in the presence of phosphates, independent of
the pH of the system. This observation was confirmed
in a microwave environment using model systems. The
results indicated that the addition of phosphates signifi-
cantly increased the browning color intensity of a

5,108,770

21
xylose:albumin:shortening (1:1:2) system after 90 sec-
onds of microwave time. Table 6 indicates that the
phosphate effect was significant despite decreases in pH
(KH;PO, was the phosphate source used).

TABLE 6 5
MODEL SYSTEM PHOSPHATE EVALUATION

Sample pH Average L Value*

Control 7.5 67.1 .
PO4/NaOH 6.7 54.6 10
PO4 5.8 64.8

PO4 (2X) 5.5 61.7

*Number of samples equals 5.

There is support in the literature for the observed
effect of phosphates (J. Sci. Fd. Agric., 17:245, 1966). 15
Citrates and carbonates have also been observed to
enhance browning.

As described earlier, increasing the amount of open
chain form of the sugar enhances the browning reaction
rate. This is especially significant because, in most of the 20
systems studied, sugar levels were browning rate limit-
ing. Mutarotase was evaluated with the model system
procedure. Mutarotase was obtained from Sigma
Chemical Company, St. Louis, Mo. Mutarotase (aldose-
1-epimerase) catalyzes the interconversion of alpha-D- 25
glucose and beta-D-glucose involving an open-chain
form. Results indicate a significant increase in brown
color when mutarotase was present in the glucose:al-
bumin:shortening system. The concentration of mutaro-
tase employed was 50 units/0.69 g of a 1:1:2 albumin:- 30
glucose:shortening browning formula where one unit
increases the spontaneous mutarotation of alpha-D-
glucose to beta-D-glucose by 1.0 micromole per minute
at pH 7.4 at 25° C. The average L values (n=5) after
120 seconds of microwave exposure was equal to 68.7 35
for mutarotase-supplemented samples and 73.8 for uns-
upplemented control samples.

The degree of isolation and protection afforded the
browning agent(s) by the carrier system can be modi-
fied to fit the distribution needs of the product. The 40
invention described herein provides a method of mak-
ing a microwave surface browning formula capable of
performing in any food distribution system (e.g., frozen,
refrigerated, or shelf stable) by selecting an appropriate
carrier. '

The following experiment was conducted to demon-
strate the effect of distribution temperature and, carrier
composition on browning system stability and reactiv-
ity. The examined temperature ranges reflect the three
most common distribution temperatures encountered in 50
the food industry, namely frozen (—18° C.), refriger-
ated (4° C.), and shelf stable (21° C.). The carriers evalu- -
ated were chosen to reflect a wide range of ability to
protect and isolate the browning reagents under the
three distribution temperatures mentioned above. The 55
three carriers evaluated were shortening, oil, and water.

In addition, dry browning reagents were applied di-
rectly to the product surface in an attempt to evaluate
the effect of no carrier. The browning system used in
this study consisted of a 1:1 soy protein:xylose mixture 60
dispersed into an equal amount (by weight) of shorten-
ing, oil, or water. In the case of the dry ingredients, an
equivalent amount of soy protein and xylose to that
used in the carrier based systems was applied.

The experiment consisted of applying the various 65
browning systems described above to the surface of
unleavened dough. Treated biscuit dough samples were
then placed into plastic pouches, flushed with COa,

45

22
sealed and stored under the three temperature ranges
mentioned earlier. The L, az, by values of the sample
surfaces were evaluated after 1, 3, and 6 days storage for
each distribution temperature prior to and after micro-
wave preparation.

FIG. 19 graphically depicts the change in surface
color between storage day one and six prior to micro-
wave preparation. Color change is defined as the square
root of ((L1-L6)?+(ar1-az6)2+(br1-br6)2); where
1.1,arl, bzl and L6, a16, bz 6 are equal tothe L, az, by,
values recorded after storage day one and six respec-
tively. FIG. 19 shows at —18° C. all four carriers to
provide about the same degree of browning agent pro-
tection as evidenced by the relatively small extent of

_color change over the six-day storage period. However,

at 4° C,, a discernible trend in browning system color
stability was observed. At refrigeration temperatures,
the extent of ingredient stability and protection pro-
vided by the different systems varies as follows (listed
from most to least stable): shortening, oil, water, no
carrier system. Lastly, at 21° C. in this test, the only
carrier capable of preventing the browning reagents
from prereacting over the six-day study period was
very hydrophobic (e.g., shortening).

FIG. 20 graphically depicts the pre-to-post mi-
crowaving change in biscuit sample surface color after
six days storage. The greater the degree of protection
provided the product, either by carrier system selection
or distribution temperature, the greater the extent of
microwave color development as evidenced by larger
pre-to-post microwaving color differences. Hence,
shortening, which provides the same extent of protec-
tion, displays the same relative amount of microwave
color development at all three distribution tempera-
tures. More temperature - sensitive browning systems
(e.g., dry browning ingredients) display an inverse rela-
tionship between storage temperature and microwave
heating color development (i.e., the lower the storage
temperature, the greater the microwave color develop-
ment and vice versa).

The findings of this study indicate that it is possible to
produce a microwave browning system capable of per-
forming over a wide range of distribution temperatures
by selecting an appropriate carrier system.

Another means of browning system control is that of
product and browning system moisture contents. In an
attempt to evaluate the relationship between product
and browning system moisture contents and microwave
browning, a series of experiments were conducted in
which low and high moisture product systems were
treated with low, medium, and high moisture browning
systems. The “moist product” system used was Pills-
bury biscuit dough samples (total moisture=42%) -
while the “dry product” system used was microwave
precooked Pillsbury buttermilk biscuit samples (total
moisture=16%). The formulations of the low, medium,
and high moisture browning systems evaluated are
given below:

Low Moisture Medium Moisture High Moisture

25% xylose
25% soy protein
50% shortening

25% xylose
25% soy protein
35% shortening
15% water

25% xylose
25% soy protein
20% shortening
30% water

The moist and dry samples were coated with the
browning systems as prepared in Example 1. FIG. §

5,108,770

23

graphically depicts the changes in transmittance (from
400 to 700 nm) for the biscuit samples after treatment
with low, medium, and high moisture browning sys-
tems. As FIG. § shows, as the moisture content of the
browning system is increased, there is a corresponding
increase in light transmitted over the visible spectrum.
As the moisture content of the browning system was
increased, less microwave browning occurred. How-
ever, when the dry samples were treated and prepared
in a similar fashion, the results were different. FIG. 6
graphically depicts the changes in transmittance (from
400 to 700 nm) for dry samples treated with low, me-
dium, and high moisture browning systems. Upon close
examination of FIG. 6, it would appear that for the dry
system, the medium moisture browning system was the
better of those tested for microwave browning color
development. Although the high and low moisture
browning systems browned generally to the same extent
on the dry biscuit samples, as evidenced by their similar
transmittance spectra; neither browned to the extent
that the medium moisture browning system did. Hence,
by varying the moisture content of either the product or
browning system, it is possible to control microwave
browning.

A particularly effective and widely applicable micro-
wave browning system is comprised of three basic in-
gredients: a reducing sugar, an amino compound (pro-
tein), and lipid. A browning system composed of xylose
and proteins suspended in a shortening matrix has been
used thus far to brown the surfaces of biscuit dough,
cake batter, pastry dough, roll dough, coffee cake bat-
ter, bread dough, pizza crust dough, and french toast.
Advantages of this system include its simplicity, adapt-
ability to existing products and processes, ability to be
adjusted to coincide with product textural develop-
ment, stability through shelf life, and dual applicability
to microwave and conventional preparations. Several
means of controlling the development of color have
been identified. These include adjusting the concentra-
tions of the reactants, as well as the use of pH level,
phosphates, intermediates, coparticulates, mutarotase,
protease, steam-retaining packaging, and the use of
dielectric affecting salts. Reducing sugars and amino
compounds are reactants required for Maillard
browning while the lipid serves as a carrier that sup-
presses Maillard browning for a required shelf life but
allows rapid reaction on exposure to microwave radia-
tion. A third component required for Maillard
browning, water, can be provided by the food system
itself as a result of exposure to microwave energy and-
/or may be supplied by the carrier in certain applica-
tions. The ratios of the three components relative to one
another play an important role in overaill system perfor-
mance as does the amount of browning coating applied
to the surface. A system composed, by weight, of one
part sugar to one part protein to two parts vegetable
shortening has performed very effectively in many sys-
tems.

Although the mode of incorporation of the browning
system to various products can vary, the general operat-
ing principle of the browning system does not change.
In most product systems, the browning coating was
applied to the surface of the product as a thin layer.
Such a coating may comprise browning agents in vari-
ous forms such as.drys (previously unmixed and unre-
acted), coparticulates from reactants previously mixed
in a solution and the solvent removed, or intermediates.

25

30

35

45

50

55

60

65

24

An important advantage of a browning system de-
scribed herein is that during refrigerated storage, the
browning agents (sugar and protein or intermediates)
are held, reactively immobilized in a lip environment of
extremely low water content. Such a system effectively
retards the Maillard reaction rate to the extent that
browning does not appreciably occur during storage.
Reactive isolation is not needed when there is a very
short shelf life, for example, in a commercial setting.
Water can be used as a carrier for a product when it is
to be microwave heated immediately after application.
This system is particularly useful in batter and dough-
based systems.

Maillard browning reactions between various amino
compounds (e.g., amino acids and proteins) and a given
reducing sugar source have been shown to develop
different observable brown hues under identical reac-
tion conditions. Similarly, Maillard Browning reactions
between various sugar sources (e.g., glucose, fructose,
and xylose) and a given protein source have been shown
to develop different observable brown hues under iden-
tical reaction conditions. '

The reason different proteins produce various brown
hues under identical reaction conditions is a function of
the reactivities, and accessibility, of their component
amino acids. The more reactive and accessible the com-
ponent amino acids of a given protein source, the
greater its browning potential.

The reactivity of the protein used in the browning
systems has an important effect on the final hue and
color intensity observed in the product systems. The
brown color produced by the browning system-upon
exposure to microwave energy appears to be, in part, a
function of the type and reactivity of protein employed.

The effect of protein on color formation was exam-
ined for microwave-prepared biscuit dough samples
treated with lipid browning systems containing various
food proteins. The results were evaluated by Gardner
colorimetric analysis. The hue values of the browning
systems evaluated varied from 578.90 nm (nanometer)
for gluten to 588.25 nm for sodium caseinate with
chroma ranging from 42% for gluten up to 64.7% for
albumin. The results of this study indicated that chroma
and hue are functions of both individual protein amino
acid composition and the overall extent of Maillard
browning.

Experiments examining the color development path-
way of various amino acid and protein sources have
shown that regardless of the amino compound em-
ployed in the browning system, all follow the same
general color development trajectory when plotted on
an x', y' 1931 chromaticity diagram, differing only in
overall magnitude after a given reaction time (see FIG.
18). The effect of amino acid/protein type on Maillard
browning color development appears to be a scalar
function with directional coordinates fixed and magni-
tude a function of the reactivity of the amino acid/-
protein source used and reaction time.

This provides another means of browning control, for
example, a product requiring a relatively long micro-
wave cooking time could use a protein of lower reactiv-
ity.]

A study was conducted in which the amount of nin-
hydrin-reactive lysine present in a series of food prote-
ins was experimentally determined. The lysine content
was correlated with Gardner colorimetric values ob-
tained from biscuit dough samples treated with the
microwave browning system containing these proteins.

5,108,770

25

A linear relationship was found between the absorbance
of the ninhydrin chromophore and concentration of
protein sample (see FIG. 10). The extent of absorbance
(slope of the linear relationship) was a linear function of
the lysine content of each protein sample (see FIG. 11).

Gardner L and a values obtained from biscuit dough
samples exposed to microwaves after treatment with
microwave browning formulas incorporating the vari-
ous proteins showed a linear relationship when plotted
against gm Lys/100 gm protein and extent of chromo-
phore absorbance (e.g., the slope of the linear relation-
ship between ninhydrin chromophore absorbance ver-
sus mg protein, see FIG. 12).

A direct relationship was observed between the
amount of lysine per given amount of protein, ninhydrin
chromophore “absorbance, and extent of Maillard
browning (as reflected by lower Gardner L values and
higher Gardner a values). The determination of ninhy-
drin chromophore absorbance values could be a quick
and efficient screening method for predicting the per-
formance level of a given protein in a Maillard-based
microwave browning system. One could specifically
choose a protein source of a given reactivity such that
the product could brown to an appropriate extent upon
completion of the microwave cooking cycle. In addi-
tion, the ninhydrin evaluation could also be an effective
test to assure uniform performance of a given protein
(e.g., a quality assurance tool in a manufacturing facil-
ity). :

In addition to protein reactivity, the physical condi-
tion of the protein employed in the browning system
was found to have an effect on browning color develop-
ment. Physical shearing (denaturation) of proteins in-
creased the rate of Maillard browning. Gardner colori-
metric analysis of biscuit samples treated with browning
compounds which had been sheared in an electric mixer
prior to product application resulted in lower Gardner
L values and higher Gardner a; values as compared to
those values obtained with unsheared control samples.

TABLE 7

BISCUIT SURFACE L, a;. by VALUES
VERSUS BROWNING SYSTEM SHEAR TIME!

MIX TIME
0 (min.) 7.5 (min.) 15 (min.)
L 60.0 589 56.1
ay 119 13.1 138
br 28.2 28.2 27.3

1) Used a Hamilton Beach Scovili eleciric mixer (mixing speed set on 5)

By shearing the protein browning system prior to
product application, an increased number of primary
and secondary amino groups were likely exposed and
created via the disruption of the proteins quaternary,
tertiary, secondary, and primary structure. Increasing
the total number of possible Maillard reaction sites ef-
fectively increased the overall extent of Maillard
browning. Denaturing the protein through other means
may have a similar effect. :

Experiments examining the color development path-
way of various reducing sugars have shown that regard-
less of the sugar employed in the browning system, all
follow the same general color development pathway
when plotted on an x', y' 1931 chromaticity diagram,
differing only in overall magnitude after a given reac-
tion time (see FI1G. 24). The effect of reducing sugar
type on Maillard Browning color development appears
10 be a scalar function with directional coordinates fixed

50

55

65

26
and magnitude a function of the inherent reactivity of
the reducing sugar used and reaction time.

In general, the greater the amount of microwave
browning system applied to a given product, the more
extensive color develops. The relationship between
quantity of browning system applied and color devel-
oped in a biscuit model system was examined. The top
surface of Pillsbury buttermilk biscuit dough samples
were coated with various amounts of a 1:1:2, by weight,
soy protein:xylose:shortening browning system ranging
from 0 to 2.5 grams. Upon completion of microwave
heating, biscuit surface color was evaluated via Gard-
ner colorimetric analysis.

The findings of this study are graphically depicted in
FIGS. 13 and 14. The plot of “average Gardner L val-
ues versus grams browning system applied per biscuit”
clearly shows that biscuit surface color darkens quite
rapidly (reflected by the rapid drop in observed L val-
ues from 71.4 to 57.7) as the amount of the browning
system applied to the biscuit sample surface increased
from 0 to 1.5 grams. Browning system applied in excess
of 1.5 grams produced little, if any, further effect on the
observed L value of the biscuit sample surface.

Gardner a; values, which quantify the amount of
green to red coloration, were observed to increase (i.e.,
become more “red”) as the amount of applied browning
system increased from 0.5 to 1.5 grams. Amounts of
applied browning system in excess of 1.5 grams resulted
in a slight decrease in observed Gardner a; values.

Gardner by values, which measure the extent of blue
to yellow coloration, were not significantly affected by
the quantity of applied browning system.

The results of this study also showed that the hue and
chroma of microwave prepared biscuit samples coated
with about 1.5+/-—0.2 grams browning system most
closely approximate the hue and chroma of a conven-
tionally baked biscuit control (see FIGS. 13 and 14).

Different reducing sugars are known to have an ef-
fect on the rate of Maillard browning. Of the reducing
sugars studied, xylose has been found to brown most
effectively. However, glucose, particularly in conjunc-
tion with inorganic phosphate catalysts, pH-affecting
controllers, intermediate formation and/or coparticu-
late formation, is also useful. Table 8 shows the Gardner
L, ar, by, values obtained from biscuit dough samples
treated with a browning system employing glucose in
conjunction with sodium bicarbonate (a pH affecting
controller). Note that as % soda and pH increases,
Gardner L values decrease while az values increase.

TABLE 8

1:1:2 GLUCOSE:SOY PROTEIN:SHORTENING SYSTEM
ave. Gardner values

% Soda L values - ay values bz values pH
0.00 715 3.7 23.0 6.58
1.96 65.4 6.1 24.2 7.25
3.85 61.0 7.6 237 7.48
5.66 59.7 8.7 24.1 7.56
9.10 57.4 9.3 235 7.72

Color development is directly proportional to the
amount of time the microwave browning system is
exposed to microwave energy and, when applicable, the
steam environment created thereby. Luxtron tempera-
ture studies of biscuit dough browning systems show
that the longer the system is exposed to microwave
energy, the greater the observed temperature (surface

5,108,770

27

and ambient) and subsequent color (browning) develop-
ment.

EXAMPLE 1
Biscuits

‘A biscuit dough microwave browning system was
designed to utilize browning chemistry and packaging
technology. :

1.78 grams of a browning system comprising one part
soy protein, one part xylose, and two parts solid vegeta-
ble shortening was applied with a spatula to the top
surface of Pillsbury Buttermilk Biscuit dough samples
(top surface area=23 cm?). The browning system was
pliable enough for smooth application.

Nine coated samples were placed into a pregreased
plastic pan. The pan of samples was subsequently sealed
in a plastic pouch (93" % 11§") to retain product mois-
ture and to protect against atmospheric contamination.

Prior to microwave heating, the pouch was punc-
tured four times (two punctures at each end) to allow
for steam venting during the microwave cooking cycle.
The samples were subjected to 2 minutes of microwave
heating in a Litton Generation II microwave oven,
oven power set on “high”. Upon completion of the
microwave cooking cycle, the biscuit sample package
was removed from the microwave oven and allowed to
rest undisturbed for approximately 2 to 3 minutes. Dur-
ing this 2-to-3 minute post-microwave exposure period,
a significant amount of browning occurred. Upon com-
pletion of the post-microwave resting period, the outer
plastic package was removed, thereby releasing the
entrapped steam and arresting the browning process.
The microwave prepared biscuits appeared golden
brown similar in appearance to conventionally baked
biscuit products.

Results obtained from temperature studies of
pouched versus nonpouched package systems showed
significantly lower surface and atmosphere tempera-
tures recorded for the nonpouched systém when com-
pared to the pouched system (see FIG. 15). This indi-
cates that in the pouched system there was sufficient
energy and/or moisture available to facilitate the
browning reaction mechanism with this particular se-
lection of browning agents and controllers.

EXAMPLE 2
Biscuit Silicate Application

A silicate based microwave browning system was

tested.

Whey protein (32.64 g) and xylose (16.76 g) were
dissolved in 100 m! of water. Calcium silicate (29.92 g)
was placed in a Oster blender and blended on a high
setting for 10-15 seconds to fluff the silicate. The pro-
tein/xylose solution was added in two equal aliquots
and blended after each addition for 30-35 seconds on
high to make a smooth paste. Meited Crisco shortening
(61.92 g) and glycerol (30.76 g) were added to the water
silicate paste and blended for 30-35 seconds on high.
The paste was scraped into the center of the bowl and
blended for an additional 30-35 seconds. Upon comple-
tion of blending, the silicate based browning system was
stored at 5° C. until use.

2 g of refrigerated silicate based browning system
was spread evenly onto the surface of Pillsbury Butter-
milk Biscuit dough samples (see Example 1). A total of
eight biscuit dough samples were prepared as described
above and placed into a hard plastic tray and sealed in
a plastic pouch with the corners perforated to permit

20

25

30

35

40

45

50

55

60

65

28

steamn venting. The biscuit dough samples were baked in
a Litton Generation Il microwave oven on high for 2
minutes. After the 2-minute cooking cycle and a subse-
quent 2-minute room temperature cooling period, the
microwave browned biscuit samples were removed
from the pouch. After the microwave cooking cycle
and room temperature cooling period, the biscuits ap-
peared golden brown, similar in appearance to conven-
tionally baked biscuit products. '

EXAMPLE 3
Cake

Because Pillsbury microwave yellow cake is a batter
system, the browning system (a 1:1:2, by weight, soy
protein: xylose:shortening mixture) was applied to the
cooking vessel such that it would be in contact with the
outer surface of the batter throughout the microwave
cooking cycle. This was accomplished in two manners:
1) By manually applying browning system to the inte-
rior of the microwave cake pan (surface area=531.4
cm2) prior to the addition of cake batter, and 2) By
dusting a dry 1:1 mixture of browning ingredients (e.g.,
soy protein and xylose) to a cake pan pregreased with
shortening.

After the cake batter was prepared (per the instruc-
tions on the package), it was poured directly into a
pretreated cake pan, and microwaved for 7 minutes
(oven power set on “high”). A Litton Generation II
microwave oven Model #2492 (power step 1) was used
in all of the cake experiments described herein. Upon
completion of the microwave cooking cycle, the cake
was immediately inverted and removed from its pan.

The color and textural properties of the microwave
prepared browned cake closely approximated those of a
conventionally prepared cake. A golden brown dehy-
drated crust developed.

EXAMPLE 4
Shelf Life

The shelf life performance of the microwave
browning system of the present invention was evaluated
in the buttermilk biscuit dough model system as de-
scribed in Example 1. Throughout a seven-week study
period, biscuit dough sample packages were periodi-
cally removed from refrigeratéd storage, microwaved,
and evaluated via Gardner colorimetric analysis. Gard-
ner L and a; values remained virtually unchanged while
by values varied slightly (no more than 15%) through-
out the seven-week study (see FIGS. 16 and 17). In
addition, the browning system browned to the same
relative extent upon microwave preparation regardless
of refrigeration storage time. -

EXAMPLE 5
Coparticulate

Enhancing browning through prereaction may be
accomplished by suspending the browning agents in
water and drying them in such a manner as to yield dry
solids (coparticulates). For example, a suspension was
made by mixing 25 grams of albumin and 25 grams of
xylose in 100 grams of water. This suspension was
freeze dried for three days in a small laboratory freeze
drier and the resultant coparticulate was evaluated ver-
sus the initial reactants in a shortening matrix on micro-
wave biscuits. In each evaluation, nine samples were
cach coated with 1.7 grams of the browning system,

5,108,770

29

placed in a microwaveable baking vessel inside a steam
retaining pouch, and cooked on high in a Litton Gener-
ation II microwave oven for 2 minutes. The system was
allowed to sit an additional 2 minutes after microwaving
prior to opening the pouch. Eight of the nine biscuits
microwaved in each run were evaluated using a Milton
Roy spectrophotometer. Table 9 shows the averages of
the resultant L a; bz color values:)

TABLE 9

Solids/Shortening _ Gardner Color Value
Sample Type Ratio L aj bz
xylose/albumin 12 811 —20 342
control 1 N
xyloxe/albumin 1:1 70.1 74 53.2
control 2
xylose/albumin 1.2 70.7 7.6 547

coparticulate

The data indicated that by producing the coparticu-
late, the reactivity of the system has been enhanced, as
compared to using non-coparticulate starting materials.

EXAMPLE 6

Incorporation of Browning System into the Crumb of a
Bread Product by Blitzing

Two small loaves of microwave bread-like products
were made as follows to demonstrate interior browning.
For each loaf, the dry ingredients (see formulas below)
were premixed by hand. The shortening and water was
then added and mixed in briefly with a spoon. The
resultant dough was hand kneaded for 5 minutes and
shaped into small loaves. The dough was allowed to
proof for 10 minutes and then baked in a Litton Genera-
tion II microwave oven for 4 minutes. After this time,
the loaves were cut in half and the color of the crumb
was compared. The test loaf, containing the browning
agents xylose and soy protein, had a browned crumb
color whereas the control was white.

Control Test

flour 100 grams flour 100 grams
shortening 7 grams shortening 10 grams
sucrose 7 grams xylose 10 grams
GDL 1.5 grams soy protein 10 grams
soda 1 gram soda 1 gram
water 60 grams GDL 1.5 grams

water 65 grams

EXAMPLE 7

Incorporation of Browning System into the Interior of
a Product System by Lamination

Approximately 70 g of a 1:1:2, by weight, soy pro-
tein:xylose:shortening mixture was spread onto one side
of an unraveled 152 g piece of Pillsbury Pipin'Hot ®
Loaf dough using a butter knife. The treated loaf was
re-rolled in such manner that the coated surface re-
mained in the interior of the product. The prepared loaf
was then microwave heated in a Litton Generation II
microwave oven set on high for 4 minutes. Upon com-
pletion of the microwave cooking cycle, browning for
the loaf interior had occurred. The browning coating
did not diffuse to any significant extent into the crumb
structure of the loaf. Rather it remained isolated on the
surface to which it was applied. As a result of laminated
application, a brown swirl pattern developed within the

10

15

45

50

30
treated loaf. No observable browning occurred in an
untreated control sample.

EXAMPLE 8
Electrolyte Browning Enhancement

A browning system comprising of 90% weight basis
the formula described in Example 2 and 10% NaCl was
prepared as outlined in Example 2. Approximately 2.5 g
of the browning system described above was applied to
two separate Pillsbury Buttermilk Biscuit dough sam-
ples. The samples were covered with Saran Wrap and
baked in a Litton Generation II microwave oven on
high for 90 seconds. Upon completion of the micro-
wave cooking cycle, the samples were allowed to cool
for 2 minutes after which time the Saran wrap was
removed and Gardner colorimetric values taken. Two
control samples were prepared, as described above,
using the silicate based browning formula outlined in
Example 2 (without the addition of NaCl). Table 10
shows the Gardner L, a;, and by values observed for
biscuit samples treated with the two browning systems
described above.

TABLE 10
GARDNER L, a;, AND bz VALUES
CONTROL VERSUS 10% NaCl BROWNING SYSTEM
CONTROL 10% NaCl
L 62.3 48.9
ar 7.5 8.5
b 22,6 17.8

As the Gardner values show, the samples coated with
10% NaCl browning system browned to a greater ex-
tent than control browning system treated biscuits.

Infrared camera analysis of the surface temperature
of the 10% NaCl browning system-treated biscuit sam-
ples showed an increase in surface temperature upon
exposure to microwave energy when compared to the
control browning system-treated biscuit dough samples.
One of the advantages of electrolyte (NaCl) addition is
that a desired degree of browning may be achieved in a
shorter amount of time using smaller amounts of
browning agents (e.g., reducing sugars, proteins, and
controllers). '

EXAMPLE 9

Comparative Shelf Life Study at Varying Storage
Temperatures

Comparative studies were conducted with a
browning system in accordance with the present inven-
tion and a browning system falling within the scope of
U.S. Pat. No. 4,448,791 to Fulde, et al., and assigned to

- Campbell’s Soup Company.

55

60

65

The browning system selected from the *791 Camp-
bell patent comprised yeast extract 12.5%, xylose
12.5%, shortening 30%, flour 25%, water 20% (all by
weight). :

The browning system in accordance with the instant
invention, comprised soy protein 25%, xylose 25%,
shortening 50% (all by weight).

These two formulations were spreadable formula-
tions and were used to coat the top surface of biscuits.
Each biscuit was coated with 1.7 grams of the formula-
tion. Nine biscuits were put into microwave brownie
trays and placed in a pouch. The pouch was evacuated
and flushed with carbon dioxide to avoid color changes
in the dough due to oxidation. The biscuits stored at

5,108,770

31

room temperature were unleavened. The biscuits were
then placed in storage at three different temperatures
(0°, 40°, and 70° F.). Colorimetric analysis was per-
formed on eight of the nine biscuits in the tray at various
time intervals (see FIGS. 25, 26, and 27) before mi-
crowaving. In these figures, the biscuits treated with the
formulation in accordance with this invention, are indi-
cated on the graphs as “P”. The biscuits treated with a
browning formulation in accordance with the 791
Campbell’s patent, are indicated as “C”.

These results show that the color of the biscuit sam-
ples treated with the 791 Campbell’s formulation
changed color more than the biscuits treated with for-
mulations in accordance with this invention, over time
at 40° F. and at 70° F. Both formulations were pretty
close at 0° F. (as shown in FIG. 25). The graphs show
DE vs. days. DE is a parameter which shows *“color
change” and describes the magnitude of the difference
between the color of the biscuits at day 0 and any given
day. _

At 0° F. there is very little difference in DE between
the two samples. Both are frozen, and the reactants
should be reactively immobilized in both cases. The
change in the first day for both samples appears to indi-
cate that there was some residual oxygen which may
have caused the dough to gray slightly. That would
normally take about a day. The curves after day 1 for
both samples are fairly flat. At 40° F. there seems to be
a significant difference in DE at day 1 between the two
formulations. The formulation in accordance with the
791 Campbell’s patent has a definite positive slope,
while the formulation in accordance with this invention
seems to be unchanging after the second say. The for-
mulations in accordance with the 791 Campbell’s pa-
tent are browning slightly. -

The difference is more significant at 70° F. The for-
mulations in accordance with this invention show the
same type of curve as at the other two temperatures.
The formulation in accordance with the '791 Camp-
bell’s patent is changing much more and shows that the
browning reactants are not reactively immobilized.

Embodiments of this invention can provide the ad-
vantage of control of color development in a browning
system prior to microwave heating, thereby allowing
distribution of the treated food products at standard
food distribution temperatures, particularly frozen and
refrigerated. Embodiments of this invention can also
provide for quantitative control of the browning reac-
tion to allow the end point of browning and textural
development of the food product to coincide. Embodi-
ments of the invention also allow for the predictability
of the development of a coloring effect, and for means
of displaying predicted colors using computer technol-
ogy and color science.

SEE LAB

SeeLab is an interactive computer color display sys-
tem which allows an operator to invoke:
1. A Triplet Patch Browser which allows one to view

colors and colorimetric coordinates within a measured .

space.

2. A Gauged Browser which allows one to view
predicted food product color by selecting and setting
browning ingredient variables for a desired product
system; based on linear regression of experimental color
measurements on actual product.

3. An N by N Color Patch Browser which allows one
to view an N by N grid of predicted product color

20

35

40

45

50

55

65

32

patches generated by: a) selecting a product system; and
b) fixing all but two browning system ingredient vari-
ables, allowing the remaining two variables to vary
over their respective ranges; based on linear regression
of experimental color measurements on actual product.

1. The Triplet Patch Browser

The triplet patch browser consists of two main areas:

the gauge panel on the left and the color patch on the
right. The gauge panel consists of three labeled gauges,
each with a label, digital, and analog section. The color
patch panel consists of a surround region and a central
color display rectangle.
By changing the values of the gauges (e.g., L a; and
bz values), the displayed color patch is recomputed and
displayed. The gauged values can be changed by “drag-
ging” the analog bar which results in a corresponding
change in the digital readout or by using the popup
menu in the digital gauge to type in a value. Dragging
of an analog gauge is accomplished by placing the cur-
sor in the analog display rectangle, pressing the mouse
button and moving the cursor.

An example of the triplet patch browser is shown in
FIG. 21.

2. The Gauged Browser

The gauged patch browser consists of two main ar-
eas: the gauge panel on the top and the color patch
panel on the bottom. The gauge panel consists of la-
beled gauges, one for each independent browning sys-
tem variable in the regression on the experimental data,
each with a label, digital, and analog section. The color
patch panel consists of a surround region and a central
color display rectangle.

By changing the values of the gauges (e.g., micro-
wave time, sugar to protein ratio, soy protein to albu-
min ratio, glucose to xylose ratio, and % soda), the
displayed color patch is recomputed and displayed.
Dragging of an analog gauge is accomplished by plac-
ing the cursor in the analog display rectangle, pressing
the mouse button and moving the cursor.

An example of the gauge browser on regression is
shown in FIG. 22.

The N by N Color Patch Browser

The N by N color patch browser consists of a single
labeled grid of colored rectangles. The number of hori-
zontal and vertical divisions are the same and deter-
mined at invocation time. The horizontal and vertical
independent browning system variables are labeled at
the bottom and left edges of the grid while the fixed

_variables and their values are indicated on the top edge

of the grid.

By selecting various values for the nondisplayed in-
dependent browning system variables, a plane in n-
dimensional space is selected for display. After identify-
ing a color region or browning system of interest, a

_color contour of that system or region can readily be

generated using this browser.

An example of the N by N color patch browser on
regression is shown in FIG. 23.

Changes may be made in the components and assem-
blies described herein or in the steps or the sequence of
steps of the method described herein without departing
from the concept and scope of the invention as defined
in the following claims.

5,108,770

33

Seel.ab Assembly Notes

This section describes the steps required to assemble
the SeeLab system on top of a commercially available
release of Smalltalk-80. SeeLab is assembled on top of
this release of Smalltaik-80:

“Smalltalk-80 Programming System Version VI 2.2
Macintosh 1I; Oct. 15, 1987, ParcPlace Systems, Palo
Alto, Calif.”

Using the ‘do it’ operation on the commands in dou-
ble quotes below, load the additional components of the
system in. Note that these fileIn operations are order
sensitive and will not operate properly if the order is
changed. They assume that the Pluggable Gauges T™M
resides on directory “PG FILES v 1.1” and that the
SeeLab files reside on directory “SeeLabBuild”.

1. Execute to enlarge display space for Spectrum
display: “(DisplayScreen displayExtent: 1024@768.
“H-P 5000")"

2. To install Pluggable Gauges: “(FileStream oldFile-
Named: ‘PG FILES v 1.1:PluggableGauges V1.1.st’)
fileIn.”

3. To fileln the data types for SeelLab execute:
“(FileStream oldFileNamed: ‘SeeLab.Build:SeeLab
Data.st’) fileln.”

4. Filing in the ExcelTextStream class: “(FileStream
oldFileNamed: ‘SeeLab.Build:ExcelTextStream.st’)
fileIn.”

5. Filing in the needed ColorFormView: *“(FileS-
tream oldFileNamed: ‘SeeLab.Build:ColorForm-
View.st") fileIn.”

6. Now we’ll go for the ColorInterface.st file “(FileS-
tream oldFileNamed: ‘Seel.ab.Build:ColorInterface.st’)
fileIn.”

7. Filing in the color spaces now: “(FileStream old-
FileNamed: ‘SeeLab.Build:Color Spaces.st’) fileIn.”

8. Now, file in the triplet browser: “(FileStream old-
FileNamed: ‘SeeLab.Build:SLColorTripletBrowser.st’)
fileln.”

9. Now the tools: “(FileStream oldFileNamed: ‘See-
Lab.Build:Color Science Tools.st’) fileln.”

Examples of the Use of SeeLab

Below are examples of the use of the tools in SeeLab 45 arrow directed upwards appears as *

25

35

34
Selection and the ‘doit’ operation are part of the Small-
talk-80 environment. See Documentation for descrip-
tive details.

1. To install experimental description as global vari-
able EP120 select the text between quotes and ‘doit™:
“EP120 (SLCExperiment fromUserExcelTextFile:
‘Paul”s Reality:EP120.ex.txt’).”

The required format of the Excel Text File to build
an experiment can be found in the method ‘fromUse-
rExcelTextFile’. Note that this is not the only accept-
able way to deal with SLCExperiment creation. See
that class’s methods and comments for details. Also
notice that creation of a Global variable in the system is
also not required to use the tools. It does, however,
make garbage collection for the system easier.

2. To open a Triplet Patch Browser on a Hunter Lab
color triplet, select the text between quotes and ‘doit™:
“SLCTripletPatchBrowser openNewOn: (SLLabHun-
terColor new).”

3. To open a Gauged Browser on the global experi-
mental description created in 1., select the text between
quotes and ‘doit’: “SLCGaugedPatch openOn: EP120.”
*EP120" in this and 4. below only needs to evaluate as a
instance of class SLCExperiment and may be expressed
as another message or object reference.

4. To open a N by N Color Patch Browser on the
global experimental description created in 1., select the
text between quotes and ‘doit”: “SLCNByNBrowser
startupOn: EP120”,

'LISTINGS OF SEE LAB FILE IN FILES

The information in the following listings is copy-
righted by The Pillsbury Company.

©1989
The Pillsbury Company (17 U.S.C. 401)

Note: Due to discrepancies in the glyphs associated
with the ASCII character 95 decimal, the Smalltalk
character represented by an arrow directed towards the
left appears as in the listings. Also, ASCII character
94 decimal, the Smalltalk character represented by an

’

Below is the listing for file 'Seelab Data.st' in standard

fileIn/fileQut format:

Object subclass: #SLObject
instanceVariableNames: ''
classVariableNames: '!

LI |

poclDictionaries:

category: 'Seelab Data'!

1SLObject methodsFor: 'functions'!

: 5,108,770
35 36
penAngleFrom:firstPoint to: lastPoint
| offset x y deg |

"return the angle of the vector in Pen degrees (0 = north)"
offset _ lastPoint - firstPoint.

x _ offset x .

y _ offset y.

x = 0 ifTrue:[x _ 0.0001)].

.deg _ (y / x) arcTan radiansToDegrees.

x positive & y positive ifTrue:[deg _ 90 + deg).
x ﬁositive & y negative ifTrue:[deg _ 90 + deg].
x negative & y positive ifTrue: | dég _ 270 + degq].

x negative & y negative ifTrue:{ deg _ 270 + deg].
“~deg!

rotate: thisPoint by: anAngle around: aPoint
| point x y xn yn theta |
“rotate thisPoint by anAngle around aPoint"

theta _ (0-anAngle) degreesToRadians.

"homogenize point"
peint _ thisPoint - aPoint.

"rotate point"
x _ point x.
Yy _ point y.
Xn _ x * theta cos - (y * theta sin).
yn _ x * theta sin + (y * theta cos).

point _ xn @ yn.

"un-~-homogenize point"

point _ point _ aPoint.
“point! !

!SLObject methodsFor: 'notifying'!

5,108,770
37 38

inform: aString
"display aString inside a bordered box on the screen until

the user presses the mouse inside the box"

"SLObject new inform:
tNow is the time for all good men
to come to the aid of their country''s
deficit by sending in 1/2 of their

yearly earnings!!'™

| viewCenter continue continueBox continueFormBox continueForm
text textBox formBox screenBox screenUnderFormBox form cPoint targetBox

point delta |

"THE FOLLOWING CODE WILL PLACE THE INFORMATION VIEW IN THE CENTER OF THE
CURRENT STANDARDSYSTEMVIEW"
"viewCenter _ ScheduledControllers activeController view

insetDisplayBox center."
"TRIS CODE WILL CENTER THE VIEW AROUND THE CURRENT MOUSE LOCATION"

viewCenter _ Sensor cursorPoint.

continue _ 'click here to continue' asDisplayText.

continueBox _ continue boundingBox.

continueFormBox _ Rectangle origin: 0 € 0 extent: continueBox
extent + (4 @ 4).

continueForm _ Form extent: continueFormBox extent.

continueForm bordexrWidth: 2.

continue displayOn: continueForm at: continﬁeFoimBox center -
continueﬁox center.

text _ aString asDisplayText.

textBox _ text boundingBox.

formBox _ Rectangle origin: 0 @ 0 extent: (textBox extent x + 60

max: continueFormBox extent x) € (50 + textBox extent y).

formBox _ formBox align: formRBox center with: viewCenter.
delta _ formBox amountToTranslateWithin: Display boundingBox.

formBox moveBy: delta.

5,108,770
39 40

screenBox _ formBox.

screenUnderFormBox _ Form fromDisplay: screenBox,

form _ Form extent: formBox extent.

form borderWidth: 3.

text displayOn: form at: formBox extent //2 - textBox center - (0
@ 10).

continueForm displayOn: form at:. (cPoint _ formBox extent x //2 -
continueFormBox center x @ (form boundingBox bottomCenter y - 30)).

targetBox _ continueFormBox translateBy: cPoint + screenBox
origin.

form displayAt: screenBox origin.

Sensor cursorPoint: screenBox center,

10 timesRepeat: [Display reverse: screenBox].

- Cursor normal showWhi;e: [
[point _ Sensor cursorPoint.

(screenBox containsPoint: point)
ifralse: [Display reverse: screenBox; reverse:
screenBox] .
(targetBox containsPoint: point)
& Sensor anyButtonPressed] whileFalse].
Display reverse: targetBox.
Sensor waitNoButton.
49 timesRepeat: [Display reverse: targetBox].

screenUnderFormBox displayAt: screenBox origin! !

”n

_—— e e mar me Emn G we e Eea e e e me e mer e e W]

SLObject class

instanceVariableNames: ''!

1SLObject class methodsFor: ‘notifying'!

inform: dString
"display aString inside a bordered box on the screen until

the user presses the mouse inside the box"

"SLObject inform:

'Now is the time for all good men

5,108,770
41 42

to come to the aid of their country''s
deficit by sending in 1/2 of their

yvearly earnings!!'"

| viewCenter continue continueBox continueFormBox continueForm
text textBox formBox screenBox screenUnderFormBox form cPoint targetBox

point delta |

"THE FOLLOWING CODE WILL PLACE THE INFORMATION VIEW IN THE CENTER'/OF THE.
CURRENT STANDARDSYSTEMVIEW"

"viewCenter _ ScheduledControllers activeController view

insetDisplayBox center."

"THIS CODE WILL CENTER THE VIEW AROUND THE CURRENT MOUSE LOCATION"

viewCenter _ Sensor cursorPoint.

continue _ ‘'click here to continue’ asDisplayText;

continueBox _ continue boundingBox. '

continueFormBox _ Rectangle origin: 0 @ 0 extent: continueBox
extent + (4 @ 4).

continueForm _ Form extent: continueFormBox extent.

continueForm borderWidth: 2.

continue displayOn: continueForm at: continueFormBox center -
continueBox center.

text _ aString asDisplayText.

textBox _ text boundingBox.

formBox _ Rectangle origin: 0 @ 0 extent: ktextBox extent x + 60

max: continueFormBox extent x) @ (50 + textBox extent y).

formBox _ formBox align: formBox center with: viewCenter.
delta _ formBox amountToTranslateWithin: Display boundingBox.
formBox moveBy: delta.

screenBox _ formBox.
screenUnderFormBox _ Form fromDisplay: screenBox.
form _ Form extent: formBox extent.

form borderWidth: 3.

5,108,770
43 ' 4“4

text displayOn: form at: formBox extent //2 - textBox center - (0
e 10). ' '

continueForm displayOn: form at: (cPoint _ formBox extent x //2 -
continueFormBox center x @ (form boundingBox bottomCenter y - 30)).

targetBox _ continueFormBox translateBy: ¢Point + screeani‘
origin.

- form displayAt: screenBox origin.
Sensor cursorPoint: screenBox center.

10 timesRepeat: [Display reverse: screenBox]a
Cursor normal showWhile: [
[point _ Sensor cursorPoint.
{screenBox containsPoint: point)
ifFalse: [Display reverse: screenBox; reverse:
screenBox] .
(targetBox containsPoint: point)
& Sensor anyButtonPressed] whileFalse].
Display reverse: targetBox.
Sensor waitNoButton.
49 timesRepeat: [Disp;ay reverse: targetBox].

screenUnderFormBox displayAt: screenBox origin! !
!SLObject class methodsFor: *functions'!

penAngleFrom: firstPoint to: lastPoint
| offset x vy deg |

"return the angle of the vector in Pen degrees (0 = north)"
offset _ lastPoint - firstPoint.

x _ offset x .

y ; offset y.

x = 0 ifTrue:[x _ 0.0001]. h . g
deg _ (y / x) arcTan radiansToDegrees.

x positive & y positive ifTrue:[deg _ 90 + deg].

x positive & y negative ifTrue:[deg _ 90 + degl.

x negative & y positive ifTrue:[deg _ 270 + deg].

X negative & y negative ifTrue:{ deg _ 270 + deg].

5,108,770
45 46

~deg!

rotate: thisPoint by: anAngle around: aPoint

| point x y xn yn theta |
“"rotate thisPoint by anAngle around aPoint™

theta _ (0-anAngle) degreesToRadians.

“homogenize point"

point _ thisPoint - aPoint.

"rotate point"
x _ point x.
Yy _ peint y.
xn _ x * theta cos - (y * theta sin).

yn _ x * theta sin + (y * theta cos).

point _ xn @ yn.

"un-homogenize point"

point _ point _ aPoint.

~point! !
SLObject subclass: #SLCRegression

instanceVariableNames: ‘coefficients baseValue mixedEffects
foundationMatrix valueMatrix variableDefinitions !

classVariableNames: ‘!

pecolDictionaries: '!

category: 'Seelab Data'! -

! SLCRegression methodsFor: ‘building{!

coefficiéntsFromExcelText: aTextStream

"builds the ordered collection of the coefficients of the
experiment from

aTextStream that has already been opened and digrested for its
trajectory.

This expects (n*n + 3*n + 2)/2 coefficients of fit for each of the

color values.™"

5,108,770
47

| ' n expectedNumber aétualNumber thisCo |

n _ self variableDefinitions size.
expectedNumber _ ((n * n) + (3 * n) + 2) / 2.
self coefficients: (OrderedCollection new: 3).

1 to: 3 do: [:1i] cpefficients add: (OrderedCollection new:
expectedNumber)].

actualNumber _ 0.

[thisCo _ aTextStream nextStream contents asString.
(thisCo sameAs: '...').
| aTextStream atEnd]

whileFalse:
[actualNumbér _ actualNumber + 1.

(coefficients at: 1)
add: thisCo asNumber.

{coefficients at: 2)
' add: aTextStream nextNumber.

(coefficients at: 3)
add: aTextStream nextNumber.

aTextStream getToEndOfRow].

actualNumber = expectedNumber ifFalse: [self error: 'Coefficient

!SLCRegression methodsFor: ‘'accessing'!

baseValue
"return the value of baseValue.
For a description of this instance variable, see the comment

in the accessing method 'baseValue:'."

“baseValue!

basevValue: éPargmeter
"set the value of baseValue.
aParameter is expected to be of the class aClass...

This instance variable is used to <explanation>."

baseValue _ aParameter!

5,108,770
49 S0

coefficients
"return the value of coefficients.
For a description of this instance variable, see the comment

in the accessing method 'coefficients:'."
~coefficients!

coefficients: aParameter
"set the value of coefficients.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
coefficients _ aParameter!

foundationMatrix
"return the value of foundationMatrix.
For a description of this instance variable, see the comment

in the accessing method ‘foundationMatrix:'."

~foundationMatrix!

foundationMatrix: aParameter
"set the value of foundationMatrix.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
foundationMatrix _ aParameter!

mixedEffects
"return the value of mixedEffects.

For a description of this instance variable, see ‘the comment

in the accessing method 'mixedEffects:'."

*mixedEffects!

mixedEffects: aParameter
"set the value of mixedEffects.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

5,108,770
51 52

mixedEffects _ aParameter!

valueMatrix
"return the value of valueMatrix.
For a description of this instance variable, see the comment

in the accessing method ‘'valueMatrix:'."
AvalueMatrix!

valueMatrix: aParameter
"set the value of valueMatrix.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
valueMatrix _ aParameter!

variableDefinitions
“"return the value of variableDefinitions.
For a description of this instance variable, see the comment

in the accessing method 'variableDefinitions:'.

~variableDefinitions!

variableDefinitions: aParameter
"set the value of variableDefinitions.
aParameter is expected to be of the class aClass..:

This instance variable is used to <explanation>."

. variableDefinitions _ aParameter! !
SLObject subclass: #SLTrajectory

instanceVariableNames: 'colorSamples variableDefinitions name
description coloxSpace '

classVariableNames: '’

poolDictionaries: '!'

category: 'Seelab Data'!

!SLTrajectory methodsFor: ‘building'!

buildAnExtendedTrajectoryFrom: anExcelTextStream

5,108,770
53 54

"builds a trajectory from a ExcelTextStream passed as a parameter"
"The receiver of this message is an instance of SLTrajectory"

"Setup a reference to the TextStream and set it to the beginning"®

| ts bldspace ivlast tripletClass thisIV newSample varTable
newColor r |

ts _ anExcelTextStream,

ts reset.

self setNameFrom: ts.

self setDescriptionFrom: ts.

self setColorSpaceFrom: ts.

r _ self buildExtendedVariableDefinitionsFrom: ts.

ivLast _ r at: 1.

varTable _ r at: 2.

“Now we plug in the samples."

"Figure out what class the Triplets should belong to."

tripietClass _ SLColorTriplet allSubclasses detect: [:each | each
new colorSpace = self colorSpace]

| ifNone:
[self inform: ‘What in the world are you

trying to do.....
imagine, sending me a color space that doesn''t exist.

Where do you think we are anyway, Melmac???'.
~nil}.

{thisIV _ ts nextStream contents asString.
(thislIV sameAs: '..."')
| ts atEnd]
whileFalse:
[newSample _ SLColorSample new.
newSample trajectory: self,
"put in the independent variable values™"
1 to: ivlast do:
[:n |
newSample addvariable: ((varTable at: n)
at: 1)
value: thisIV asNumber.

thisIV _ ts nextStream contents asString].

5,108,770
55 56

newColor _ tripletClass new.
newColor valuel: thisIV asNumber.
newColor value2: ts nextNumbern
newColor value3: ts nextNumber.
newSahple color: newColor.
self addSample: newSample.
ts getToEndOfRow].
"Get top the end of the row if this isn't the end of file to get
réady for . .
coefficient building“

ts atEnd ifFalse: {ts getToEndOfRow]!

buildAaOldTrajectoryFrom: anExcelTextStream

"builds a trajectory from a ExcelTextStream passed as a parameter"

| ts bldspace varTable temp varElement n ivlast varDef
tripletClass newSample newColor thisIVv |

ts _ anExcelTextStream.

ts reset.

ts nextCellAsStringOfMax: 75.
'~ self name: ts currentObject.

ts getToEndOfRow.

"Don't care about the rest of the row.”

ts acquireMultilineText.

"Reads until three dots. 1st column only."

" Positions at last column of last row."

self description: ts currentObject.

"Now get the color space"

ts nextCellAsStringOfMax: 20.

bldspace _ ts currentObject asSymbol.

"first, figure out which color triplet class corresponds to my
color space"

SLColorTriplet allSubclasses detect: [:each | each new colorSpace
= bldspace]

ifNone:
[self inform: 'What in the world are you trying to

do.....

imagine, sending me a color space that does not exist.

5,108,770
57 58

Where do you think we are anyway, Melmac???'.
~nil].
self colorSpace: bldspace.
ts getToEndOfRow.

vFirst set of columns are the names of the IVs until ‘color!

occuzxrs™
"Buzz down through rows with column 1 as blanhk."

varTable _ OrderedCollection new.

ftemp _ ts nextCellAsStringOfMax: 35.
temp = '']
whileTrue: [ts getToEndOfRow].
(temp sameAs: 'color')
ifTrue: [self error: 'A trajectory Must have at least one
Independent Variable!!l!!'].
n_ 1.

~ "build the table with only the names"
[temp sameAs: 'color']

whileFalse:
[varElement _ OrderedCollection new: 3.
varElement add: temp.
varTable add: varElement.
temp _ ts nextCellAsStringOfMax: 35.
n _n+1).
ts getToEndOfRow.
iviast _n = 1.
"Now add the units"
ts getToEndOfRow.
temp _ ts nextCellAsStringOfMax: 35.
1 to: ivlLast do:
[:n |
varElement _ varTable at: n.
varElement add: temp.
varTable at: n put: varElement.
temp _ ts nextCellAsStringOfMax: 35. -
n _n+1}.
ts getToEndOfRow.
temp _ Compiler evaluate: (ts nextCellAsStringOfMax: 35).

5,108,770
59 60

"Now use the default values to set up the variable definitions for
the trajectory."
) 1 to: ivlast do:
[:n |
varElement _ varTable at: n.
varDef _ SlVariableDefinition -
name: (varElement at: 1)
units: (varElement at: 2)
defaultValue: teﬁp.
self addVariablebefinition: varDef.
temp _ Cdmpiler evaluate: (ts nextCellAsStringOfMax: 35).
n_n+1).
ts getToEndOfRow.

- "Now we plug in the samples.”
"Figure out what class the Triplets should belong to."

tripletClass _ SLColorTriplet allSubclasses detect: [:each | each
new colorSpace = self colorSpace)
ifNone:
[self inform: 'What in the world are you
trying to do.....
imagine, sending me a color space that doesn'‘t exist.
Where do you think we are anyway, Melmac???'.

“nill.

[thisIV _ ts nextStream contents asString.
(thisIV sameAs: '...')
| ts atEnd]
whileFalse:
[newSamplé _ SLColorSample new.
newSample trajectory: self.
"put in the independent variable values"
1l to: ivlast do:
[:n | _
newSample addvariable: ((varTable at: n)
at: 1)
value: thisIV asNumber.
thislV _ ts nextStream contents asString).

newColor _ tripletClass new.

5,108,770
61 62

newColor valuel: thisIV asNumber.
newColor valueZ: ts nextNumber.
newColor value3d: ts nextNumber.
newSample color: newColor.

self addSample: newSample.

ts getToEndOfRow]!

buildARevisedOldTrajectoryFrom: anExcelTextStream

"builds a trajectory from a ExcelTextStredm passed as a parameter™"
| ts bldspace varTable temp varElement n ivlast varDef

tripletClass newSample newColor thisIV r |
ts _ anExcelTextStream.
ts reset.
self setNameFrom: ts.
self setDescriptionFrom: ts.
self setColorSpaceFrom: ts.
r _ self buildvariableDefinitionsFrom: ts.
ivlast _ r at: 1.

varTable _ r at: 2.

"Now we plug in the samples."
"Figure out what class the Triplets should belong to.™
tripletClass _ SLColorTriplet allSubclasses detect: [:each | each
new colorSpace = self colorSpace]

ifNone:

[self inform: 'What in the world are you
trying to do.....

imagine, sending me a color space that doesn'‘t exist. -
Where do you think we are anyway, Melmac???',.

~nil].

[thisIV _ ts nextStream contents asString.
(thisIV sameds: '...")
| ts atEnd]
whileFalse:
[newSample _ SLColorSample new.
newSample trajectory: self.

*put in the independent variable values"®

5,108,770
63 64
1 to: ivLast do:
[:n |
newSample addVariable: ({(varTable at: n)
at: 1) i N '
value: thisIV asNumber.

thisIV _ ts nextStream contents asString].
newColor _ tripletClass new.

newColor valuel: thisIV asNumber.
newColor value2: ts nextNumber.
newColor value3: ts nextNumber,
newSample color: newColor.

self addSample: newSample.

ts getToEndOfRow] !

buildATrajectoryFrom: anExcelTextStream

] ts bldspace ivLast tripletClass thislV newSample varTable

newColor |

color

"builds a trajectory from a ExcelTextStream passed as a parameter"

ts _ anExcelTextStream.

ts reset.

ts nextCellAsStringO£fMax: 75.

self name: ts currenﬁObject.

ts getToEndOfRow.

"Don't care about the rest of the row."

ts acquireMultilineText.

"Reads until three dots. 1st column only."
" Positions at last column of last row.™
self description: ts currentObject.

"Now get the color 3pace" ‘

ts nextCellAsStringOfMax: 20.

bldspace _ ts currentObject asSymbol.
n"first, figure out which color triplet class corresponds to my
space"

SLColorTriplet allSubclasses detect: {:each | each new colorSpace

= bldspace]

ifNone:

5,108,770
65 66

[self inform: 'What in the world are you trying to

imagine, sending me a color space that does not exist.

Where do you think we are anyway, Melmac???'.
~nil}. T

self colorSpace: bldspace.

ts getToEndOfRow.

"Build the variable definitions from the stream. This method
returns the number of independent variables found in the textstream."

ivlast _ self buildvVariableDefinitionsFrom: ts.

"Now we plug in the samples."

"Figure out what class the Triplets should belong to.™

tripletClass _ SLColorTriplet allSubclasses detect: [:each | each
new colorSpace = self colorSpace]

ifNone:
[self inform: 'What in the world are you

trying to do.....
imagine, sending me a color space that doesn''t exist,
Where do you think we are anyway, Melmac???'.

*nil).

{thisIV _ ts nextStream contents asString.
(thisIV samelAs: '..."')
| ts atEnd]}
whileFalse:
[newSample _ SLColorSample new.
newSample trajectory: self.
"put in the independent variable values"
1 to: ivLast do:
{:n |
newSample addVariable: ({(varTable at: n)
- at: 1)
value: thisIV asNumber.
thisIV _ ts nextStream contents asString].
newColor _ tripletClass new.
newColor valuel: thisIV asNumber.
newColor value2: ts nextNumber.
newColor value3: ts nextNumber.

newSample color: newColor.

5,108,770
67 . 68

self addSample: newSample.
ts getToEndOfRow]!

buildExtendedVariableDefinitionsFrom: aTextStream
"pirst set of columns are the names of the IVs until ‘'coloer!
occurs" '

"yarTable is an OrderedCollection of the IV names for later use"
"Buzz down through rows with column 1 as blank."

| temp n varElement ivlLast varDef varTable returned |
varTable _ OrderedCollection new.
[temp _ aTextStream nextCellAsStringOfMax: 35.
temp = '']
whileTrue: [aTextStream getToEndOfRow],
(temp sameAs: ‘'color')
ifTrue: ([self error: 'A trajectory Must have at least one
Independent Variable!!'],
n_ 1.
"build the table with only the names"
[temp sameAs: 'color']
whileFalse:
[varElement _ OrderedCollection new: 6.
varElement add: temp.
varTable add: varElement.
temp _ aTextStream nextCellAsStfingOfMax: 35.
n_n+ 1),
aTextStream getToEndOfRow.
iviast _ n - 1.
"Now add the units"
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35,
1 to: ivLast do:
[:n |

varElement _ varTable at: n.
varElement add: temp.

varTable at: n put: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1]j.

5,108,770
69
"Now add the default"

aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
1l to: ivlast do:
[:n | _
varElement _ varTable at: n.
varElement add: temp.

varTable at: n put: varElement.

temp _ aTextStream nextCellAsStringOfMax:

n_n+1].
"Now add the center"
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
1 to: ivlast do:
[:n]
varElement _ varTable at: n.
varElement add: temp.

varTable at: n put: varElement.

temp _ aTextStream nextCellAsStringOfMax:

n_mn+1].
"Now add the range"
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
1 to: ivlast do:
[:n | .
varElement _ varTable at: n.
varElement add: temp.

varTable at: n put: varElement.

temp _ aTextStream nextCellAsStringbeax:

n_n+1}.

' "Now add the min"
aTextStream getToEndOfRow.

35.

35.

35.

temp _ aTextStream nextCellAsStringOfMax: 35,

1 to: ivlast do:
[:n |
varElement _ varTable at: n.
varElement add: temp.

varTable at: n put: varElement.

70

5,108,770
71 ~ 72

temp _ aTextStream nextCellAsStringbeax: 35.
n_n+1].
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
"Now use the max values to set up the variable definitions for the
trajectory."
-1 to: ivlast do:
[:n |
varElement _ varTable at: n.
varDef _ SLCExtendedVariableDefinition
name: (varElement at: 1)
units: (varElement at: 2)-
defaultvValue: (varElement at: 3)
center: (varElement at: 4)
range: (varElement at: 5)
‘min: (varElement at: 6)
max: temp.
self addvariableDefinition: varDef.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1j].
aTextStream getToEndOfRow.
returned _ OrderedCollection new: 2.
returned add: ivLast.
returned add: varTable.

~“returned!

buildvVariableDefinitionsFrom: aTextStream

occurs"”

"Buzz down through rows with column 1 as blank."

| varTable temp n varElement ivlast varDef returned |

varTable _ OrderedCollection new.

{temp _ aTextStream nextCellAsStringOfMax: 35.
temp = ']
whileTrue: [aTextStream getToEndOfRow].

(temp sameAs: 'color')

5,108,770
73 74

ifTrue: [self error: 'A trajectory Must have at least one
Independent Variable!!'],
n_ 1.
"build the table with only the names"
{temp samelAs: 'color']
vhileFalse:
[varElement _ OrderedCollection-new: 3.
varElement add: temp.
varTable add: varElement.
temp _ aTextStream nexﬁCellAsStringOfMax: 35.
n_n+ 1].
aTextStream getToEndOfRow.
ivLast _ n‘— 1.
“"Now add the uniaTextStream"
aTextStream getToEndOfRow.
temp _ aTextStream nextCellAsStringOfMax: 35.
1 to: ivlast do:
[:n |
varElement _ varTable at: n,
varElement add: temp.
varTable at: n put: varElement.
temp _ aTextStream nextCellAsStringOfMax: 35.
n_n+1]).

- aTextStream getToEndOfRow. .
temp _ Compiler evaluate: (aTextStream nextCellAsStringOfMax: 35).

"Now use the default values to set up the variable definitions forx
the trajectory.”
1 to: ivlast do:
{:n |
varElement _ varTable at: n.
varDef _ SLvariableDefinition
name: (varElement at: 1)
units: (varElement at: 2)
defaultvValue: temp.
self addvariableDefinition: varDef.
temp _ Compiler evaluate: (aTextStream
nextCellAsStringOfMax: 35).
n_n+1].

5,108,770 :
75 76
aTextStream getToEndOfRow.
returned _ OrderedCollection new.
returned add: ivlast.

returned add: varTable.

“returned!

setColorSpaceFrom: anExcelTextStream
| ts bldspace |
"Get the color space, verify that it's valid and set it in the
Trﬁjectory"
ts _ anExcelTextStream.
ts nextCellAsStringQfMax: 20..
bldspace _ ts currentObject asSymbol.
SLColorTriplet allSubclasses detect: [:each | each new colorSpace
= bldspace]
ifNone:
[self inform: ‘'Color space does not exist'.
~nil}.
self colorSpace: bldspace.
ts getToEndOfRow.

- “bldspace!
setDescriptionFrom: anExcelTextStream

vRead and insert the description from multiple lines of text in

column A"
"Reads until three dots. 1st column only. Positions at last

column of last row."

| ts |

ts _ anExcelTextStream.

ts acquireMultilineText.

self descriﬁtion: ts currentObject.

“~description!

setNameFrom: anExcelTextStream
"Read and insert the name of the Trajectory from column A and skip

to the end

of the row."

5,108,770
77 78

| ts |

ts _ anExcelTextStream.

ts nextCellAsStringQfMax: 75.
self name: ts currentObject.
ts getToEndOfRow.

~self name! !

1S1Trajectory methodsFor: ‘'accessing'!

colorSamples
"return the value of colorSamples.

For a description of this instance variable, see the comment

in the accessing method 'colorSamples:'."

colorSamples isNil ifTrue: [self colorSamples: OrderedCollection

new] .

. “colorSamples!
colorSamples: anOrderedCollection

"set the value of colorSamples.
anOrderedCollection is expected to be of the class
OrderedCollection.

This instance variable is used to hold a collection of instances

of SLColorSample."
colorSamples _ anOrderedCollection!

colorSpace
"return the value of colorSpace.
For a description of this instance variable, see the commen:
in the accessing method '‘colorSpace:'."

colorSpace isNil ifTrue:[self colorSpaée:#LabHunter].

~colorSpace!

colorSpace: aSymbol
"set the value of colorSpace.
aSymbol is expected to be of the class Symbol.
This instance variable is used to hold a symbol that denotes the

.color space used in this trajectory. All color samples taken in this

5,108,770
79 80

experiment should be recorded as LabColorSamples.™

colorSpace _ ‘aSymbol!

description
"return the value of description.
For a description of this instance variable, see the comment
in the accessing method 'description:'."

description isNil ifTrue: [self description: 'not defined yet'].

“description!

description: aString

' "set the value of description.
aString is expected to be of the class String.

This instance variable is used to the verbose description of this

trajectory."
description _ aString!

name
"return the value of name.
For a description of this instance variable, see the comment
in the accessing method 'name:'."

name isNil ifTrue:[self name: 'not defined yet'].

“name!

name: aString
"set the value of name.
aString is expected to be of the class String.
This instance variable is used to hold the name of this

trajectory."
name _ aString!

variableDefinitions.
“return the value of variableDefinitions.
For a description of this instance variable, see the comment

in the accessing method ‘variableDefinitions:'."

5,108,770
81 82

i initions:
variableDefinitions isNil ifTrue: [self variableDefin

OrderedCollection newj.
‘variableDefinitions!

variableDefinitions: anOrderedCollection

wget the value of variableDefinitions. .
i lass
anOrderedCollection is expected to be of the ¢

anOrderedCollection.

of SLVariableDefinition.“
veriableDefinitions _ anOrderedCollection! !

!SLTrajectory methodsFor: 'color sample access'!

addColorSample
*create the proper color sample with the right independent
variables and add it

to my collection of samples™

| colorSample |

colorSample _ self newColorSample.
self colorSamples add: colorSample.
coloxrSample trajectory: self.

~colorSample!

addColorSampleBefore: anSlLColorSample
| colorSample |
“create the proper color sample with the right independent

variables and add it to my collection of samples”

colorSample _ self newColorSample.

self colorSamples add: colorSample before: anSLCeolorSample.
colorSample trajectory: self,

“colorSample!

5,108,770
83" 84

addSample: aSample.
| colorSample |

self colorSamples add: aSample.!

blankColorSample

| tripletClass colorTriplet colorSample |
“"create the proper color sample with the right independent

variables and return it"
colorSample _ SLCclorSample new.

"first, figure out which color triplet class corresponds to my color
space"

tripletClass _ SLColorTriplet allSubclasses detect:{:each| each new
colorSpace = self colorSpace] ifNone:[self inform:

'What in the world are you trying to do.....

imagine, sending me a color space that doesn''t exist.

Where do you think we are anyway, Melmac???'. “~nil}.
colorTriplet _ tripletClass new.

colorSample color: colorTriplet.

~“colorSample!

newColorSample
"create the proper color sample with the right independent
variables and return

it "
| tripletClass colorTriplet cclorSample |

colorSample _ SLColorSample new.

"first, figure out ﬁhich color triplet class corresponds to my
color space"

tripletClass __ SLColorTriplet allSubclasses detect: [:each | each

new colorSpace = self colorSpace]l

5,108,770
85 86

ifNone:
[self inform: 'Color sample space does not
exist'. '
~nil].
colorTriplet _ tripletClass new.
colorSample color: colorTriplet.
self variableDefinitions do:
[:varDef |
colorSample addVariable: varDef name.
colorSample atVariable: varDef name put: varDef

defaultvValue].

~colorSample!

removeColorSample: anSLColorSample

“remove this sample"
self colorSamples remove: anSLColorSample.
anSlLColorSample trajectory: nil.! !

!SLTrajectory methodsFoxr: 'IV value range access'!

maxMinQfIV: aString
"colorSamples is an OrderedCollection. Each sample holds a
Dictionary-class

instance variable holding the IV string name and the associated

value."

"This routine finds the min and max of a IV named aString and

returns them as

a2 point (min@max).ﬁ

| min max temp n |
min _ 9998999999998899999,
max _ 0 - min.
1 to: self colorSamples size db:
[:n |
temp _ (self colorSamples at: n)

atVariableIfPresent: aString.

5,108,770
87 88

temp isNil
ifFalse:
[temp > max ifTrue: [max _ temp].
temp < min ifTrue: [min _ temp]
]
jr

!SlLTrajectory methodsFor: ‘variable definition access'!

addvariablebefinition
"create a new var def and keep it..... if it does not conflict with
an existing var ’

def "

| varDef |
varDef _ SLVariableDefinition fromUser.
self variableDefinitions detect: [:each | each name = varDef name]
ifNone:
[self variableDefinitions add: varDef.
~self].
self inform: 'A variable definition named
_''v , varbef name , ''"! .
already exists in this t:ajéctory'.

~nil!

addvariableDefinition: anSLVariableDefinition
"keep a new definition.....if it does not conflict with an

existing var def"

| varDef |
self variableDefinitions detect: [:each | each name =
anSlLVariableDefinition name]
ifNone:
{self variableDefinitions add: anSLvVariablebefinition.

~self].
self inform: 'A variable definition named

ttv , anSlLVariableDefinition name , ''!

5,108,770
89 90

already exists in this trajectory'.

~nil!

addvariableDefinitionFromUser
“create a new var def and keep it.....if it does not conflict with
an existing var

def "

| varDef |
varDef _ SLVariableDefinition fromUser.
self variableDefinitions detect: [:each | each name = varDef name)
ifNone: ,
[self variableDefinitions add: varDef.
~self].
self inform: ‘A variable definition named
tvr . varDef name , ‘!
already exists in this trajectory'.

~nil!

removeVariableDefinition: aString

"remove a var def named aString"

| varDef |
varDef _ self variableDefinitions detect: [:each | each name =
astring]
ifNone:
[self inform: 'A variable definition named
ver , aString , '
does not exist in this trajectoxy'.
~nil].

self variableDefinitions remove: varDef!

unitsFor: aString — .
wreturn the units string for my variable definition named aString"

| varDef |
varDef self variableDefinitions detect: [:each | each name =

asString].

~varDef units!

- 5,108,770
91

variableDefinitionNamed: aString

“return a var def named aString"

92

~self variableDefinitions detect: [:each | each name = aString)

ifNone:

[self inform: 'A variable definition named

[N , aString ' [|
does not exist in this trajectory’'.

~nil})! !
!SLTrajectory methodsFor: 'releasing'!

release

"clean up"

self colorSamples do:[:each| self removeColorSample:

self colorSamples: nil.
super release! !
!SlTrajectory methodsFor: 'browsing'!

browse

“open a browser on me"
SLTrajectoryBrowser openOn: self! !

!SLTrajectory methodsFor: 'sample sorting'!
resortSamples '

| varName sortedSamples |
"sort the samples™

varName _ self variableDefinitions first name.

eachl.

sortedSamples _ self colorSamples ésSortedCollection:[:x iyl (%

atVariable: varName) < (y atVariable: varName)].

self colorSamples: sortedSamples.

self changed:#order! !

5,108,770
93 94

!SLTrajectory methodsFor: 'xy plotting'!

xyPlotFromUser
"ask the user for each parameter and then create a data set and
open an

X¥DataSetView on it"

(string paraml param2 dataSet |
string _ FillInTheBlank request: ‘Enter a variable name or 1,2,o0r
3 for the X axis:'.
(#('1* '2' '3') includes: string)
ifTrue: [paraml _ string asNumber]
ifFalse:'[paraml _ string].
string _ FillInTheBlank request: ‘Enter a variable name or 1,2,cr
3 for the Y axis:‘'.
(#(*1* *2' '3') includes: string)
ifTrue: [param2 _ string asNumber]
ifralse: [param2 _ string].
dataSet _ self createDataSetWithX: paraml andY: param2.

dataSet edit! !

'1SLTrajectory methodsFor: ‘'xy data set generation'!
createDataSetWithX: paraml andY: param2

"create and return a data set using the parameters paraml and
param2 on the

respective axes. If a param is a String, then it is a variable
name, if it is a

number, then it is 1~3 and refers to triplet values 1-3"

| queryl query2 dataSet x y |
(paraml isKindOf: String)
ifTrue: [queryl _ Array with: #atVariable: with: parami]
ifFalse: [queryl _ Array with: ('value' , paraml
printString) asSymbol].
_(paramz isKindOf: String)
ifTrue: [query2 _ Array with: #atVariable: with: param2]
ifFalse: [query2 _ Array with: ('value' , param?2
printString) asSymboll].

5,108,770

05 96

dataSet _ XYDataSet new.
self colorSamples do:
[:sample |
queryl size > 1

ifTrue: [x _ sample perform: queryl first with: queryl

last)
ifFalse: [x _ sample color perform: queryl first].
) query2 size > 1
ifTrue: [y _ sample performﬁ_queryz first with: query2
last]

ifFalse: [y _ sample color perform: query2 first].
dataSet dataPoints add: x @ yJ].

~dataSet! !

SLTrajectory class

instancevVariableNames: ''! .
!SLTrajectory class methodsFor: ‘building'!

fromUserExcelTextFile
"read in a new an ExcelTextStream on a user-specified Excel text file

and open a Trajectory browser on it."

"The input format is:

--cell 21 is text name of the trajectory

--cell A2 thru An is 2 text description of the
trajectory. It ends in three consecutive periods. Each line is a

maximum of 75 characters.

~=-cell An+l is the system that the colors Qere measured in,

first non-blank A cell after that is the name of the first independent
variable.

--independent variable names continue in consecutive cells to the right
until the cell name 'color' is encountered, indicating the column where
the first tristimulus readings are entered.

the next row under the IV names contain the units of the IV's.

5,108,770
97 98

--no default values are used during build. If an expected field is

blank, an error is generated and the build will not result in a

Trajectory. All cells, however are scanned.

—--the next rows contain samples. Any cells not specified explicitly
above or implied by the IV and tristimulus columns can be used as
desired. They will be ignored by the system.

The last row contains three periods in the first column."
| inName directory localName traj |

_inName _ FillInTheBlank request:'File name, please.'.
directory _ FileDirectory directoryFromName: inName setFileName:

[:localNamex | localName _ localNamex].
(directory isLegalFileName: localName)
ifTrue:
[traj _ super new.
traj buildATrajectoryFrom: (ExcelTextStream oldFileNamed: inName).

“trajjl!

fromUserExcelTextFile: aFileName
"read in a new an ExcelTextStream on a user-specified Excel texs file

and open a Trajectory browser on it."

"The input format is:

--cell Al is text name of the trajectory

--cell A2 thru An is a text description of the
trajectory. It ends in three consecutive periods. Each line is a

maximum of 75 characters.

-~cell An+l is the System that the colors were measured in.

first non-blank A cell after that is ihe name of the first independent
variable.

--independent variable names continue in consecutive cells to the right
until the cell name ‘color' is encountered, indicating the column where

the first tristimulus readings are entered.

5,108,770
99 100

the next row under the IV names contain the units of the IV's.

--no default values are used during build. If an expected field is
blank, an error is generated and the build will not result in a

Trajectory. 2ll cells, however are scanned.

--the next rows contain samples. Any cells not specified explicitly
above or implied by the IV and tristimulus columns can be used as

desired. They will be ignored by the system.
The last row contains three periods in the first column."®

| inName directory localName traj |

inName _ aFileName.
directory _ FileDirectory directoryFromName: inName setFileName:
[:localNamex | localName _ localNamex].
(directory islegalFileName: localName)
ifTrue:
[traj _ super new.
traj buildATrajectoryFrom: (ExcelTextStream oldFileNamed: inName).

‘traj]!.

testFromUserExcelTextFile -
“read in a new an ExcelTextStream on a user-specified Excel text file

and open a Trajectory browser on it."

"The input format is:

~~cell Al is text name of the trajectory

--cell A2 thru An is a text description of the

trajectory. It ends in three consecutive periods. Each line is a
maximum of 75 characters.

--cell An+l is the system that the colors were measured in.

first non-blank A cell after that is the name of the first independent

variable.

--independent variable names continue in consecutive cells to the right

‘ 5,108,770
101 102

until the cell name 'color' is encountered, indicating the column where
the first tristimulus readings are entered.

the next row under the IV names contain the units of the IV's.
--no default values are used during build. If an expected field is

blank, an error is generated and the build will not result in a

Trajectory. All cells, however are scanned.

--the next rows contain samples. Any cells not specified explicitly
above or implied by the IV and tristimulus columns can be used zas

desired. They will be ignored by the>system."
| inName directory localName traj |

inName _'Paul''s Reality:Excel Color
Files:Panama/Fahrenholtz:PanamaTest01l"',

directeory _ FileDirectory directoryFromName: inName setFileName:
[:localNamex | localName _ localNamex].

(directory islegalFileName: localName)

ifTrue:
[traj _ super new.

traj buildrRevisedOldTrajectoryFrom: (ExcelTextStream oldFileNamed:
inName) .

~trajl! !
SLObject subclass: #SLColorSample

instanceVariableNames: 'coler independentVariables trajectory
classVariableNames: '! '
poolDictionaries: '!'

category: 'Seelab Data'!

!SLColorSample methodsFor: ‘accessing’!

color
“return the value of color.
For a description of this instance variable, see the comment

in the accessing method ‘color:'."

color isNil ifTrue: [self color: SLlLabHunterColor new].

~colorx!

< 5,108,770
103 | 104

color: anSlLColorTriplet
"set the value of color.
anSlColorTriplet is expected to be a subclass of anSLColoxTriplet.
This instance variable is used to hold the color observed for this

sample.™
color _ anSLColorTriplet!

independentVariables

"return the value of independentVariables.

For a description of this instance variable, see the comment

in the accessing method 'independentVariables:'."
independentVariables isNil ifTrue:[self independentVariables: Dictionary
new).

~independentVariables!

independentVariables: aDictionary
"set the value of independentVariables.

aDictionary is expected to be of the class Dictionary.

This instance variable is used to hold a dictionary of
independentVariables connected with this sample. The keys of this
dictionary will be the names of the variables and the values will {you

guessed it!!), the values for the variables."
independentVariables _ aDictionary!

trajectory
"return the value of trajectory.
For a description of this instance variable, see the comment

in the accessing method 'trajectory:'."
“trajectory!

trajectory: anSLTrajectory
"set the value of trajectory.
anSLTrajectory is expected to be of the class SLTrajectory.
This instﬁnce variable is used to hold the trajectory that I am a

member of."

5,108,770
105 106

trajectory _ anSLTrajectory! !

!SLColorSample methodsFor: 'independent variable access'!

addvVariable: aString
"add a new variable named aString to my dictionary of independent

variables"”

(self independentVariables includesKey: aString)
ifTrue: [self inform:

'I already have an independent

variable named ''', aString,'''.'. “nil].

self independentVariables at: aString put:''.!
addvariable: aString wvalue: aValue

"add a new variable named aString to my dictionary of independent

variables"

(self independentVariables includesKey: aString)
ifTrue: [self inform:

'I already have an independent

variable named ''', aString,'‘''.'. “nil].

self independentVariables at: aString put: avalue.!

atVariable: aString

"return the vlaue of my variable named aString"

(self independentVariables includesKey: aString)
ifralse:[self inform:
'I don''t have an independent

variable named ''', aString,'''.'. “nill.
~self independentVariables at: aString!

atVariable: aString put: aValue

"change the value of my variable named aString to aValue"®

(self independentVariables includesKey: aString)

ifFalse: [self inform:

5,108,770
107 108

'T don''t have an independent’

variable named ''', aString,'''.'. “nil].
self independentVariables at: aString put:aValue.!

atVariableIfPresent: aString

"return the vlaue of my variable named aString"

(self. independentVariables includesKey: aString)
. ifFalse:[~nil}.

~self independentVariables at: aString!

removeVariable: aString
“remove a variable named aString from my dictionary of independent

variables®

{self independentVariables includesKey: aString)
iffalse: [self inform:

'I don''t have an independent

variable named ''', aString,'''.'. “nil]}.

self independentVariables removeKey: aString!

valueStringAtVariable: aString

"return the variable aString's value with the units®

~(self atVariable: aString) printString,' ', (self trajectory unitsFor:

astring)!

variableNames

"return a collection of the names of my variables"
~self independentVariables keys asOrderedCollection! !
!SLColorSample methodsFor: 'browsing'!

browse

"open a browser on me"

5,108,770
109 110

SLColorSampleBrowser openOn: self! !

tsLColorSample methodsFor: ‘printing'!

variableString .
"return a string with the valueString of the first variable"

~self valueStringAtVariable: self trajectory variableDefinitions first

name! !
SLObject subclass: #SLCExperiment

instancevVariableNames: ‘'trajectory coefficients !

classVariableNames: '!'

poolDictionaries: '!

category: 'Seelab Data'!
SLCExperiment comment:
'This class holds an experiment. It contains a trajectéry of class
SLTrajectory and coefficients of fit (generated from a SAS analysis on
the mainframe) that will be used in generating interpolated values. The
trajectory contains data points of color measurement corresponding to a

number of independent variables taking on a particular value.

trajectory : class SLTrajectory

cecefficients : class OrderedCollection

This class will be the browsed model for SLCExperimentGridBrowser as way

of flying through the color space of the fit experiment.'!

{SLCExperiment methodsFor: 'building'!

buildFromExcelTextFile: aFileName
"builds an experiment from an ExcelTextStream. It first builds
the trajectory

and then the coefficient OrderedCollections from the Stream."

| inName directory localName traj textStream |
inName _ aFileName.
directory _ FileDirectory directoryFromName: inName

setFileName: [:localNamex | localName _ localNamex]).

5,108,770
111 112

(directory isLegalFileName: localName)
ifTrue:
[self trajectory: SLTrajectory new.

textStream _ ExcelTextStream oldFileNamed: inName.
trajectory buildAnExtendedTrajectoryFrom: textStream.

self coefficientsFromExcelText: textStream}!

coefficientsFromExcelText: aTextStream

‘"builds the ordered collection of the cdefficients of the
experiment from

aTextStream that has already been opened and Aigrested for its
trajectory.

This expects (n*n + 3*n + 2)/2 coefficients of fit for each of the

color values."”

| n expectedNumber actualNumber thisCo |

n _ trajectory variableDefinitions size.

expectedNumber _ ((n * n) + (3 * n) + 2) / 2.

self coefficients: (OrderedCollection new: 3).

1 to: 3 do: [:i | coefficients add: (OrderedCollection new:
expectedNumber)).

actualNumber _ 0.

[thisCo _ aTextStream nextStream contents asString.
{thisCo sameAs: '...")
| aTextStream atEnd]
whileFalse:
{actualNumber _ actualNumber + 1.
{coefficients at: 1)
add: thisCo asNumber.
(coefficients at: 2)
add: aTextStream nextNumber.
(coefficients at: 3)
add: aTextStream nextNumber.
aTextStream getToEndOfRow].
actualNumber = expectedNumber ifFalse: [self error: 'Coefficient

-

count error!!!itttr]t | i

!SLCExperiment methodsFor: 'coefficient access'!

: 5,108,770
113 114

coefficientIndexFor: aNumber by: anotherNumber

"This routine calculates the index of the xecond order term of the
regression equation involving the two pafémeters provided. 1Index
swapping is provided if the first parameter is larger than the second

although this should not normally be the case.”

| nVars lo hi temp |

nVars _ self trajectory variableDefini;ions size,
aNumber = anotherNumber ifTrue: [“nVars + 1 + aNumber].
lo _ aNumber.

hi _ anotherNumber.

lo > hi
ifTrue:
[temp _ lo.
lo _ hi,
hi _ temp].
temp _ 0.

1 to: lo do: [:n | temp _ temp + (nVars - n + 1)].
temp _ temp + nVars + 1 + hi - lo.

~“temp! !

!{SLCExperiment methodsFor: 'accessing'!
coefficients
"return the value of coefficients.
For a description of this instance variable, see the comment

in the accessing method 'coefficients:'.”

coefficients isNil ifTrue: [self error:'Coefficients must come
form Experiment Build'].

~coefficients!

coefficients: anOrderedCollection

" "set the value of coefficients.
anOrderedCollection is expected to be of the class

OrderedCollection.
This instance variable is used to hold the coefficients of the fit

equation of the

5,108,770
115 ‘ 116

design for values 1, 2 & 3 of the color triplet space of the
trajectory. Element

#1 is for value 1, #2 for value 2 and #3 for valug 3, each of
which is an

OrderedCollection of its own."
coefficients _ anOrderedCollection!

coefficientsFor: anlnteger

"return the coefficients for a values regression"

"Element #1 is for value 1, #2 for value 2 and #3 for value 3,
each of which is an

OrderedCollection of its own."
“coefficients at: aninteger!

coefficientsFor: anInteger put: anOrderedCollection
"set the value of coefficients for a values regression"
"aParameter is expected to be of the class OrderedCollection.
Element #1 is for value 1, #2 for value 2 and #3 for value 3, each
of which is an

OrderedCollection of its own."
coefficients at: anInteger put: anOrderedCollection!

trajectory
"return the value of trajectory.
For a descrlptlon of this instance variable, see the comment
in the accessing method ‘trajectory:!) v !
We default on nil to building a trajectory from an Excel text

format file." .
trajectory isNil ifTrue: [self error: 'Trajectory must come from

Experiment Build'].

“trajectory!

trajectory: aParameter
"set the value of trajectory.

aParameter is expected to be of the class aClass.

5,108,770
117 118

This instance variable is used to <explanation>."
trajectory _ aParameter! !
!SLCExperiment methodsFor: 'independent variable access'!

atvVariable: aString

"return the vlauve of my variable named aString"

(self trajectory independentVariables includesKey: aString)
ifFalse:[self inform:
'I don''t have an independent

variable named ''', aString,'''.'. “nil].
~self trajectory independentVariables at: aString!

valueStringAtVariable: aString

"return the variable aString's value with the units"

~(self atVariable: aString) printString,' ', {(self trajectory unitsFor:

aString)! !
!SLCExperiment methodsFor: 'releasing'!

release
trajectory release.

.trajectory _ nil.
coefficients _ nil.

super release.! !

SLCExperiment class

instanceVariableNames: '‘'!

1SLCExperiment class methodsFor: 'building'!

fromUserExcelTextFile

| inName directory localName exp |

5,108,770
119 120

inName _ FillInTheBlank request:'File name, please.’.
directory _ FileDirectory directoryFromName: inName setFileName:
{:localNamex | localName _ localNamex].
(directory islegalFileName: localName)
ifTrue:
[exp _ super new,

exp buildFromExcelTextFile: (ExcelTextStream oldFileNamed: inName)]!

fromUserExcelTextFile: aFileName
- | inName directory localName exp |
inName _ aFileName.

directory _ FileDirectory directoryFromName: inName setFileName:
[:localNamex | localName _ localNamex]).
(directory islegalFileName: localName)

ifTrue:

[exp _ self new.
exp buildFromExcelTextFile: inName].

~exp! !
SiLObject subclass: #SLCSimpleRegression

instanceVariableNames: 'experiment varCount °

classvariableNames: '

poolDictionaries: '!

category: 'Seelab Data'!
'SLCSimpleRegression methodsFor: ‘trajectory accessing'!
colorSpace

~“self experiment trajectory colorSpace!
description

“self experiment trajectory description!

name

“self experiment trajectory name!

5,108,770
121 122

variableCount
varCount isNil ifTrue: [varCount _ self experiment trajectory
variableDefinitions sizel.

“varCount! !
!SLCSimpleRegression methodsFor: 'color calculating'!

calculateTripletFor: anOrderedCollection

"This returns a SLColorTriplet subclass of the proper class for
the experiment

from the independent variable values present in

anOrderedCollection."
| tripletClass newTriplet |

tripletClass _ SiColeorTriplet allSubclasses detect: [:each | eacﬁ
new colorSpace = self experiment trajectory colorSpace]
ifNone:
[self inform: 'Color sample space does not
exist'.
~nilj.
newTriplet _ tripletClass new.
newTriplet valuel: (self calculateValue: 1 using:
anOrderedCollection).
newTriplet value2: (self calculateValue: 2 using:
anOrderedCollection).
newTriplét value3: (self calculateValue: 3 using:
anOrderedCollection) .

“newTriplet!

calculateValue: aNumber using: dataValues

"aNumber is the regression equation to use related to a color
triplet wvalue. B

datavalues is expected to be an OrderedCollection of numbérs.“

"start with intercept. calculate linear terms. calculate 2nd order

terms."

| coefs temp |
coefs _ self experiment coefficientsFor: aNumber.

"this returns an OrderedCollection™

5,108,770
123 124

"The zeroth order term"
temp _ coefs at: 1.
"The linear terms"
‘ 1 to: self variableCount do: [:n | temp _ temp + ((coefs at: n +
1) |
* (datavalues at: n))].
"The pure second order terms"
.1 to: self variableCount do: [:n [temp _ temp + ((coefs at: self

variableCount + n + 1)
* (dataValues at: n) * (datavValues

at: n))l.

"The mixed terms"

1 to: (self variableCount - 1) do: [:n | (n+l) to: self
variableCount do: [:m]
"What coefficient index do I use?"
temp _ temp + ((coefs at: (self experiment coefficientIndexFor: n by:
m)) o

* (dataValues at: n) * (dataValues

at: m))1].

~ temp!

convertValue: aValue of: anlndex
“This is generalized'converaion routine that will use the
appropriate formula for

the type of conversion required."

| v temp |
aValue isNil ifTrue: [“nil].
anlndex > self variableCount
ifTrue:
[self error: 'That vaiiable doesn not exist to
CONVERT!!". v
. ~nil}.
v _ self experiment trajectory variableDefinitions at: anIndex.
v units = 'ratio! »
ifTrue:
{temp _ self ratioConvertValue: aValue of: anlndex.

“templ].

5,108,770
125 126

temp _ self normalizeValue: aValue of: anlndex.

“temp!

normalizeValue: aValue of: anlIndex
"This routine normalizes an input value using the center and range

values for the
independent variable at index anIndex. Returns nil for bad input.®

| v val calc |
anIndex > self variableCount
ifTrue:
‘{self error: ‘That variable doesn not exist to
NORMALIZE!!"'.
_ ~nil].
v _ self experiment trajectory variableDefinitions at: anIndex.
"y is an ExtendedVariableDefinition now.™
val _ avValue.
val < v min
ifTrue: [val _ v min]
ifrFalse: [val > v max ifTrue: (val _ v max]].
calc _ val - v center / v range.

~calc!

ratioConvertValue: aValue of: anlndex

"This routine normalizes an input value using the center and range

values for the

independent variable at index anIndex. Returns nil for bad input.

This is slightly different than a straight normalize. It is used

to convert an input ratio to

a coded (-1,0,1) value used for regressed value calculation.™

| v val calc inv |
anIndex > self variableCount
ifTrue:
[self error: 'That variable does not exist to RATIO
CONVERT!!*.

~nil].

_ 5,108,770
i 127 128

v _ self experiment trajectory variableDefinitions at: anIndex.

"v is an ExtendedVariableDefinition now."

val _ aValue.
val < v min

ifTrue: (val _ v min]

ifFalse: [val > v max ifTrue: [val _ v max]].
val = 0 ifTrue: [inv _ 999999999]ifFalse: {inv _ 1/val].
calc _ ((1/(1+inv) - v center) / v range).

~cale! !}
1S1CSimpleRegression methodsFor: ‘accessing'!

experiment

"return the value of experiment.

For a description of this instance variable, see the comment

in the accesszing method ‘experiment:'.™
~experiment!

experiment: aParameter
"set the value of experiment.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

experiment _ aParameter!

varCount

"return the value of varCount.

For a description of this instance variable, see the comment

in the accessing method 'varCount:'.™

“varCount!

varCount: abParameter
"set the value of varCount.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

5,108,770
129 130

varCount _ aParameter! !

M e e e erer s s e tear mmem mmen Eman @ Gmem e e e e e U
.

S.CSimpleRegression class

instancevariableNames: ''!

!SLCSimpleRegression class methodsFor: 'instance creation'!

on: anExperiment
| sz |
sr ;.self new.
sr experiment: anExperiment.

~sr! 1}
!SLCSimpleRegression class methodsgFor: 'testing'!

testl

"Select this and say Print It within an inspector on an experiment"

| v ret |
ret _ OrderedCollection new.
v _ OrderedCollection new.
v ;dd: {self convertValue: 40 of: 1).
v add: (self convertValue: 50 of: 2).
v add: (self convertvalue: 0 of: 3).
§ add: (self convertValue: 50 of: 4).
v add: (self convertValue: 2.5 of: §).
1 to: 3 do:[:n] ret add: (self calculateValue: n using: v)J).

“ret!

test2
"copy this into an inspector on a regression and inspect it."
|1 v ret |

ret _ OrderedCollection new.

v add: (self convertValue: 40 of: 1).
v add: (self convertValue: 50 of: 2).

5,108,770
131 132

v add: (self convertValue: 0 of: 3).
v add: (selflconvertValue: S0 of: 4),
v add: (self convertValue: 2.5 of: 5).
ret _ self calculateTripletFor: v.

“ret! !
SLObject subclass: #SLColorTriplet

instancevVariableNames: 'valuel value? value3 °
classVariableNames: 't
" poolDictionaries: !

category: 'Seelab Data'!

!SIColorTriplet methodsFor: 'color space accessing'!

colorSpace

"return a symbol denoting my color space™
self subclassResponsibility! !
!SlColorTriplet methodsFor: ‘accessing'!

valuel
"return the value of valuel.
For a description of this instance variable, see the comment

in the accessing method 'valuel:'."

valuel isNil ifTrue: [self valuel: 0.03].

“valuel!

valuel: aNumber
"set the value of valuel.
aNumber is expected to be of the subclass of Number.

This instance variable is used to hold value 1 of the triplet."

valuel _ aNumber.

self changed: #valuel!

value?2

"return the value of value2.

5,108,770
133 134

For a description of this instance variable, see the comment
in the accessing method ‘'value2:'."
value2 isNil ifTrue:(self wvalue2: 0.0].

~“value2!

value2: aNumber
"set the value of value2. »
aNumber is expected to be of the subclass of Number.

This instance variable is used to hold value 2 of the triplet.®

value2 _ aNumber.

self changed: #valuel!

value3
"return the value of value3.
For a description of ﬁhis instance variable, see the comment
in the accessing method 'value3:'."

valuel isNil ifTrue: {self value3: 0.0].

*value3!

value3: aNumber
"set the value of value3.
aNumber is expected to be of the subclass of Number.

This instance variable is used to hold value 3 of the triplet."

value3 _ aNumber.

self changed: #value3! !
!1SLColoxrTriplet methodsFor: 'conversion'!

asCIEFMCII

"return a new color triplet cbnverted to CIEFMCII"

self subclassResponsibility!
asCIELAB

"return a new cclor triplet converted to CIELAB"

self subclassResponsibility!

5,108,770
135 .

asCIELUV
“"return a new color triplet converted to CIELUV"

self subclassResponsibility!

aslabHunter

"return a new color triplet converted to Lab"
self subclassResponsibility!

asRGBGuns

"return a new color triplet converted to RGB"
self subclassResponsibility!

asXYZ

“return a new color triplet converted to Xyz"
self subclassResponsibility!

asYxy

"return a new color triplet converted to Yxy"
self subclassResponsibility! !
!SLColorTriplet methodsFor: 'value range accessing'!

valuelRange

"return the rdnge for value 1"
self subclassResponsibility!

value2Range

"return the range for value 2"
self subclassResponsibility!

value3Range

"return the range for value 3"

136

5,108,770
137 138

self subclassResponsibility! !
!SLColorTriplet methodsFor: 'browsing'!

browse

“open a browser on me"
SLColorTripletBrowser openOn: self! !
!SLColorTriplet %ethodsFor: 'testing'!
producable

self subclassResponsibility! !
SLObject subclass: #SlVariableDefinition

instanceVariableNames: 'name units defaultValue '
classVariableNames: '!
poolDictionaries: !

category: 'Seslab Data'!

!SLVariableDefinition methodsFor: ‘accessing'!

defau;tValue
"return the value of defaunltValue.
For a description of this instance variable, see the comment
in the accessing method 'defaultvalue:*.®

defaultValue isNil ifTrue: {self defaultValue: 0].

~defaultvalue!

defaultvValue: aNumber
"set the value of defaultValue.
aNumber is expected to be a subclass of the class Number.
This instance variable is used to hold the default value for a

variable defined by me."
defaultValue __ aNumber!

name

5,108,770
139 140

For a description of this instance variable, see the comment
in the accessing method ‘name:'.”
name 1isNil ifTrue:{self name: 'not defined yet'].

“name!

name: aString
“set the value of name.

‘aString is expected to be of the class String.
‘This instance variable is used to hold the name of this variable."®

name _ aString!

units
"return the value of units.
For a description of this instance variable, see the comment
in the accessing method ‘units:'." .

units isNil ifTrue: [self units: 'not defined yet'].

~units!

units: aString
"set the value of units.
aString is expected to be of the class String.
This instance variable is used to hold a string naming the units

for this variable.“

units _ aString! !

Naoe mr @ e = o e e = Eme mer e e W Emem e ma e N}
.

SLvariableDefinition class

instanceVariableNames: ''!

'SLvariableDefinition class methodsFor: ‘'instance creation'!

fromUser

| string answer nameString unitsString defaultValue |

"create and return a new instance of me based on the user's input®

5,108,770
141 ’ 142

tstring _ FillInTheBlank request:'Enter the name for the variable:'.
String = ''] whileTrue: [answer _ self confirm:'Bad Input!!!!i!

Do you want to try again?'.

answer iffalse:([self inform:

‘Operation Aborted!!'. ~nil]].
nameString _ string.

{string _ FillInTheBlank request:'Enter the units for the variable:'.
string = ''] whileTrue: [answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?',

answer ifFalse:{self inform:

'Operation Aborted!!'. ~nil}l].
unitsString _ string.

{string _ FillInTheBlank request:'Enter the default value for the
variable:'.

string = ''] whileTrue:[answer _ self confirm:'Bad Input!!!t!!

Do you want to try again?’'.

answer ifFalse:[self inform:

‘Operation Aborted!!'. “nil}].
defaultValue _ Compiler evaluate: string.

~self name: nameString units: unitsString defaultValue: defaultValue!
name: nameString units: unitsString defaultValue: aNumber
) | sivd |

“"create and return a new instance of me"

slvd _ self new.

slvd name: nameString.

slvd units: unitsString.
slvd defaultValue: aNumber.

*slvd! !
SlVariableDefinition subclass: #$SLCExtendedvVariableDefinition

instanceVariableNémes: ‘type center range min max xStar

currentValue '

5,108,770
143 144

classVariableNames: '!'
poclDictionaries: '!
category: 'Seelab ﬁata'!
SLCExtendedVariableDefinition comment:
‘This class extends the SLVariable definition for use with the SAS x*

definition of :
x* = (x-¢c)/r.

This is used with the coefficients of the equation of fit to generate a

multidimensionally fit color triplet coordinate, one for each.

For speed, x* is stored internally as xStar. Any change in x,c, or r

value invokes a recomputation of xStar.'!

! SLCExtendedVariableDefinition methodsFor: 'accessing'!

center
“return the value of center.
For a description of this instance variable, see the comment

in the accessing method 'center:'."
~center!

center: aParameter
"set the value of center.
aParameter is expected to be of a class convertable to Float.

i

This instance variable is used to compute xStar"

‘center _ aParameter asNumber asFloat.
currentValue isNil | center isNil

‘ifFalse:
{self xStarSet].

~center!

currentValue

»return the value of currentValue.

5,108,770
145 146

For a description of this instance variable, see the comment

in the accessing method 'currentvValue:'.®
“currentValue!

currentValue: aParameter
"set the value of currentValue.
aParameter is expected to be of a class convertable to Float.

This instance variable is used generate color values for the

equations™

currentValue _ aParameter asFloat.
self xStarSet.

~xStar!

max
"return the value of max.
For a description of this instance variable, see the comment

in the accessing method ‘max:'."
“max!

max: aParameter
"aset the value of max.

aParameter is expected to be of a class convertable to Float.

This instance variable i1s used to set up the browser an gauges"

max _ aParameter asNumber asFloat!

"réturﬁ the value of min.

For a description of this instance variable, see the comment

in the accessing method 'min:'."

~min!

min: aParameter
nget the value of min.

aParameter is expected to be of 2 class convertable to Float.

5,108,770
147 ' 148

This instance variable is used to set up the browser an gauges"
min _ aParameter asNumber asFloat!

range
"return the value of range.
For a description of this instance variable, see the comment

in the accessing method ‘range:'."
“range!

range: avalue
| temp |
"set the value of range. .
aValue is expected to be of a class convertable to Float.

This instance variable is used to compute xStar"

temp _ aValue asNumber asFloat.
temp = 0
ifTrue:
[self error: ‘'range cannot be zero!!'.
~nil}.
range _ témp.

currentValue isNil | center isNil
ifTrue: ["nill

ifralse:
[self xStarSet.

~xStar}!

xStar
nreturn the value of xStar. .
For a description of this instance variable, see the comment

in the accessing method txStar:'."

~xStar!

xStar: aParameter

5,108,770
149 150

"Cannot be done. -This just holds values computed from

currentvValue, center and

range "

self error: 'xStar cannot be set directly!t!'.

~nilt

xStarSet
range = 0
ifTrue:
[self error: 'range cannot be zero!!'.
~nill].
range isNil | center isNil | currentValue isNil
ifTrue:
[self error: 'X Star cannot be Computed!!'.
~nil}
ifrFalse: [xStar _ (currentValue - center) /vrange].
~xStar! !

!SLCExtendedVariableDefinition methodsFor: 'releasing!'!

release
type _ nil.

center _ nil.

range _ nil.

xStar _ nil.

super release! !

Ve omer tmer wmwen e wen @mw e men wer wmen e e e e e wa e 1
.

SLCExtendedVariableDefinition class

instancevVariableNames: '‘!

!SLCExtendedVariableDefinition class methodsFor: ‘'instance creation'!

fromUser

5,108,770
151 152

| string answer nameString unitsString defaultValue centerValue
rangeValue minValue maxValue |

“create and return a new instance of me based on the user's input"

{string _ FillInTheBlank request:'Enter the name for the variable:'.
string = ''] whileTrue:[answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?'.

answer ifralse:[self inform:

'Operation Aborted!!‘'. “nil)]}.
nameString _'string,

[string _ FillInTheBlank request:'Enter the units for the variable:'.
string = ''] whileTrue: [answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?'.

answer ifFalse:[self inform:

'Operation Aborted!!'. ~nil]ll. .

unitsString _ string.
[string _ FiliInTheBlank request:'Enter the default value for the

variable:'.

string = ''] whileTrue:[answer _ self confirm:'Bad Input!!!!!!
Do you want to try again?'.

anéwer ifFalse: [self inform:

‘Operation Aborted!!'. ~nil}].

defaultValue _ Compiler evaluate: string.

[string _ FillInTheBlank request:'Enter the center value for the

variable:'.

string = '') whileTrue:[answer _ self confirm:'Bad Input!!!!!!
Do you want to try again?'.

answer ifFalse:[self inform:

'Operation Aborted!!'. “nill].

centerValue _ Compiler evaluate: string.

[string _ FillInTheBlank request:'Enter the default value for the

variable:'.

5,108,770
153 154

string = ''] whileTrue: [answer _ self confirm:'Bad Input!!!!!!
Do you want to try again?'.

answer ifFalse:(self inform:

‘Operation Aborted!!'. “nil]].

réﬁgeValue _ Compiler evaluate: string.

[string _ FillInTheBlank request: 'Enter the default value for the
variable:'. .

string = "]'whileTrue:[answer _ self confirm:'Bad Input!!!!!!

Do you want to try again?'.

answer ifFalse:[self inform:

tOperation Aborted!!'. ~nill]l.

minvalue _ Compiler evaluate: string.

[string _ FillInTheBlank request: 'Enter the default value for the

variable:'.
string = ''} whileTrue:{answer _ self confirm:'Bad Input!t!i!!!

Do you want to try again?'.
answer ifFalse:[self inform:

‘Operation Aborted!!'. ~nilj]].

maxValue _ Compiler evaluate: string.
~self name: nameString units: unitsString defaultValue: defaultValue

center: centerValue range: rangeValue min: minValue max: maxValue!

name: nameString units: unitsString defaultValue: aNumber center:
secondNumber range: rangeNumber min: minNumber max: maxNumber

“create and return a new instance of me"

| slcevd |

slcevd _ self new.

slcevd name: nameString. .
slcevd units: unitsString.
slcevd defaultValue: aNumber.
slcevd center: secondNumber.
slcevd range: rangeNumber.
slcevd min: minNumber.
slcevd max: maxNumber.

*slcevd! !

5,108,770
155 156

Below is the listing for file ‘'ExcelTextStream.st' in standard

- fileIn/fileQut format:

FileStream subclass: #ExcelTextStream

instanceVariableNames: 'endOfRow endOfSheet row column
currentObject '

classVariableNames: ''

poolDicticonaries: '!

category: 'User Interface Tools'!
ExcelTextStream comment:
'I am a Stream over a File saved under Excel as a Text file. I allow
reading of my cells only at this time although I hope t® grow into a
full~fledged I/0 information pipe for my Smalltalk station users.'!

'ExcelTextStream methodsFor: 'element accessing'!

acquireMultilineText

"This returns a String that is obtained by reading from the
current cell down a

column of cells until a2 cell ending in three periods. A string is
returned. This '

method will eat an entire spreadsheet column however so make sure
the last

one of the set you desire DOES END with three periods."

| outString aline |

outString _ ‘.

aline _ self nextCellAsStringOfMax: 75.

[ExcelTextStreém threeDotQuer&: aline}

whileFalse:
(self getToEndOfRow. .
outString _ outString , aLine;
{((outString at: (outString size)) = ' ')
ifralse: [outString _ outString , ' *').

aline _ self nextCellAsStringOfMax: 73].

outString _ outString , aline.

self getToEndOfRow.

5,108,770 '
157 158

self currentObject: outString!

getToEndOfRow
| currentChar tempEndRow newRow |

endOfRow
ifralse:
[currentChar _ self next.
tempEndRow _ self endOfRow.
[currentChar = Character cr | self atEnd}
whileFalse: [currentChar _ self next].
endOfSheet _ self atEnd. »
endOfRow _ currentChar = Character cr | endOfSheet.
newRow __ tempEndRow & endOfSheet not.
newRow
ifTrue:
[self column: 1.
self row: self row + 1)
iffalse: [self column: self column + 1].
self currentObject: nil]!
ne%tCellAsString

"Returns the next characters up to a VT or CR as a String.

Maximum length determined by default length described in

nextStream."

| newString outStream |

outStream _ self nextStream.

newString _ outStream contents asString.
self currentObject: newString. .

“newString!

nextCellAsStringOfMax: anlnteger

"Returns the next characters up to @ VT or CR as a String."

| newString outStream |
outStream _ self nextStreamOfMax: anInteger.

newString _ outStream contents asString.
self currentCbject: newString.

“newString!

5,108,770
159 160

nextNumber
"Returns the next characters up to a VT or CR as a Float."

| newNumber outStream |
outStream _ self nextStream.
newNumber _ outStream contents asNumber.

self currentObject: newNumber.

“newNumber!

nextStream
"Returns the next characters up to a VT or CR as a Stream of 25

characters maximum."

| currentChar outStream tempEndRow newRow |

outStream _ WriteStream on: (String new: 25).

currentChar _ self next.

tempEndRow _ self endOfRow.
[currentChar = Character tab | (currentChar = Character cr) | self

atEnd]}
whileFalse:
[outStrgam nextPut: currentChar.

currentChar _ self next].

endOfSheet _ self atEnd.

endOfRow _ currentChar = Character cr | endOfSheet.

newRow _ tempEndRow & (endOfSheet not).
{newRow)

ifTrue:
[self column: 1.

self row: self row + 1)

ifFalse: [self column: self column + 1].
self currentObject: outStream.

“outStream!

nextStreamOfMax: anlInteger
"Returns the next characters up to a2 VT or CR as a Stream of

anInteger characters maximum."™

| currentChar outStream tempEndRow newRow |

5,108,770
161 162

outStream _ WriteStream on: (String new: anIntegeri.
currentChar _ self next.
tempEndRow _ self endOfRow.
[currentChar = Character tab | (currentChar = Character cxr) | self
atEndl
whileFalse:
[outStream nextPut: currentCharf
currentChar _ self next].
‘endOfSheet _ self atEnd.
endOfRow _ currentChar = Character cr | endOfSheet.
newRow _ tempEndRow & (endOfSheet not).
(newRow)
ifTrue:]
{self column: 1.
self row: self row + 1}
ifralse: [self column: self column + 1].
self currentObject: outStream.

~“outStream!

reset
self row: nil.
self column: nil.
self endOfRow: nil.

self endOfSheet: nil.
super reset! !

‘ExcelTextStream methodsFor: ‘accessing--private'!

zolumn: aninteger
“set tﬁe value of column.
anInteger is expected to be of the class largePositivelnteger.
This instance variable is used to kéep track of where we are in

the sheet."
column _ anlInteger!

currentObject

~currentObject!

5,108,770
163 164

currentObject: anObject

currentObject _ anObject!

endOfRow: aBoolean

"set the value of endOfRow.

aBoolean is expected to be of the class Boolean.

This instance variable access is used to to indicate to the
current put operation on the LotusStream is of the last element of the

current row. A subsequent put will start a new row."
endCfRow _ aBoolean!

endOfSheet: aBoolean

"set the value of endOfSheet.

aBoolean is expected to be of the class Boolean.

This instance variable access is used to to indicate to the
current put operation on the LotusStream is of the last element of the

current sheet. No subsequent put will be possible."

endOfSheet _ aBoolean!
row: anInteger

"set the value of row.

anInteger is expected to be of the class Integer.

This instance variable is used to indicate where in the sheet we
are.

This setting method will position the sheet to the proper row. It
will return an error if the sheet does not contain that row. The column

will be set to the value of the instance variable."
row _ anInteger.! !
tExcelTextStream methodsFor: ‘position assessment'!

column
| tempRow |
"return the value of column.
For a description of this instance variable, see the comment

in the accessing method ‘column:‘'.™

5,108,770
165 166

column isNil
ifTrue:
{column _ LargePositivelnteger new.
column _ 0].
“Drive initialization of row value."
tempRow _ self row.

~column!

endOfRow
"return the value of endOfRow.
It is a Boolean true if the last accessing operation returned the

last element of the row of the sheet."

endOfRow isNil

ifTrue:
[endOfRow _ false].

~endOfRow!

endO£fSheet
“return the value of endOfSheet.
It is a Boolean true if the last accessing operation returned the

last element of the sheet."

endOfSheet isNil
ifTrue:
[endOfSheet _ false].
~endOfSheet!

row
“return the value of row.
For a description of this instance variable, see the comment

in the accessing method ‘row:'."™

row isNil
ifTrue:
[row _ LargePositivelInteger new.

row _ 1].

5,108,770
167 168

~row! !

"y

M i e i smar mer mEr e A e mar men TRes R A arwe e A

ExcelTextStream class

instanceVariableNames: ''!

'ExcelTextStream class methodsFor: 'element testing'!

threeDotQuery: aString .
| howlong thelastThree |
"This method ﬁests to see if aString, the parameter of the method, ends
with three periods. Returns true if it does. Returns false on nil."
{(aString isNil) ifTrue:[~false].
howlong _ aString size. '
(howLong < 3)ifTrue:[~false].
thelastThree _ aString copyFrom: (howLong - 2) to: howlong.

~{theLastThree = ', . ")! !
Below is the listing for file 'ColorFormView.st' in standard

fileIn/fileOut format:

View subclass: #ColorFormView
instanceVariableNames: 'dispForm extent '
classVariableNames: '!'
poolDictionaries: '!'
category: 'Color-Example'! .
ColoxFormView comment:
'I am a view of a colored area that matches my insetDisplayBox. I am
used with a ColorMapEditor as my model. I change color when m; ﬁodeis

color map index changes.

dispForm <Form> A form to display color

extent <Point> used in composing.'!

!ColorFormView methodsFor: ‘'displaying'!

display

5,108,770
169 170

self isUnlocked
ifTrue: {[self compose].

super display!
displayForm

ColorDevice new displayForm: dispForm onFrameBufferAt: self

insetDisplayBox origin!

displayView

self displayForm! !
'ColorFormView methodsFor: 'updating'!

cpdate: aParameter

aParameter == ¥maplndex
ifTrue: (self setMaplndex.
self display]! !

!ColorFormView methodsFor: 'composing'!

compose -
"This creates the Form for the display, then sets the map index,

which really means sets each of the pixels to the mapIndex value."

(extent ~= nil and: [extent = self insetDisplayBox extent])
ifTrue: ["self]. . .
extent _ self insetDisplayBox extent.
dispForm _ Form
extent: (self insetDisplayBox width * ColorDevice
bitsPerPixel)
@ (self insetDisplayBox height).
self setMaplndex!

setMapIndex

| bits pat bitsPerPixel index|

5,108,770 ’
17 172

bitsPerPixel _ ColorDevice bitsPerPixel.

index _ model mapIndex.

pat _ index.

(16 // bitsPerPixel) - 1 timesRepeat: [pat _ (pat bitShift:
bitsPerPixel) + index].

bits _ dispForm bits.

1 to: bits size do: {[:i | bits at: i put: pat}.! !

!ColorFormView methodsFor: ‘accessing'!
dispForm o
~dispForm! !
Below is the listing for file 'Color-Interface.st' in standard

fileIn/fileQut format:

Cbject subclass: #ColoxDevice
instancevVariableNames: '°'
classVariableNames: ‘'BitsPerPixel MaxGunValue MaxMapIndex '
poolDictionaries: '
category: 'Color-Interface'!
ColorDevice comment:
'"I am an interface to the color display hardwaré. I can displéy a

color form and change the color map.™
This is the extent of the documentation for this portal to the display.

This class only has class variables. Thus the only use for instances of
this class is to provide access to the value of these global variables

and to the methods provided for instances and the class.

Object subclass: #ColorDevice
instanceVariableNames: ‘''‘'!'
classVariableNames: '‘BitsPerPixel MaxGunValue MaxMapIndex ''
poolDictionaries: '*''! |

category: "Color-ﬁxample"

BitsPerPixel is set at class initialization time to 8. This corresponds
to the number of bits required to store the maxMapIndex value since the

bitmap stores CLUT indices, not color values.

5,108,770
173 174

ColorDevicelinitialize is the only sender of the bitsPerPixel: message.
Its value is accessed by the ColorBarView| and ColorFormView|compose
methods, ColorBarView|fillIn:inRectangle: and ColorFormvView|setMaplIndex,

ColorDevice also accesses in displayMap and example class methods.

MaxGunValue is initialized to the value returned’by ColoxDevice
classjgetMaxGunValue which invokes a primitive. Its only other use is

the accessing method ColorDevice class|maxGunValue. No setting is

possible which is understandable since this is a hardware-dependent

value.

MaxMapIndex is initialized to 255 in ColorDevicejinitialize, the only
place it is set. It is used in ColorMapEditor to determine the size of
its colorMapTable instance variable. It is generally accesed when a
loop is performed to £ill something (like the colorMapTable) with values

and that loop requires an upper index.

CLUT access is provided (output or setting only) by the
setColorMapEntry:... method. The primitive-referencing method
referenced in it is wrong. You basically provide three gun values
between 0 and the value provided by maxGunValue method of an instance of
ColorDevice. This illustrates the usual sequence of access,
instantiating a ColorDevice, sending it all the displayForm:,
maxGunValue and setColorMapEntry: messages you want to. The ColorDevice
class also has maxGunValue, bitsPerPixel and maxMapIndex accessing
methods although I would not use them. Tampering with the values of the

class variables beyond initialization would not be wise.'!

!ColorDevice methodsFor: ‘'‘primitives'!

displayForm: aForm onFrameBufferAt: aPoint

"Display aForm on the frame buffer at aPoint."

~self displayForm: aForm onFrameBufferAt: aPoint bitsPerPixel:

BitsPerPixel!

5,108,770 |
175 176

displayForm: aForm onFrameBufferAt: aPoint bitsPerPixel: anlnteger

"Display aForm on the frame buffer at aPoint."

"aForm is of class Form but it is bitsPerPixel thick. The way

that that is ']
encoded is sequentially in bitsPerPixel bits for each pixel in the

bitmap of the

Form. The value supplied as aPoint is in screen pixels, not
disturbed by the

number of bitsPerPixel. bitsPerPixel, I'm sure, is used to
dissect the WordArray

bitmap into the appropriate chunks before stuffing the

framebuffer."

<primitive: 245>

“nil!

maxGunValue

"return the maximum color gun value."

"This is used to determine what the maximum value supplied in the
setColorMapEntzy:... method for the three colors in the CLUT can be.

For the SuperMac Spectrum, this returns 65535."

<primitive: 247>

self primitiveFailed!

primativeSetColorMapEntry: anInteger toRedValue: red greenValue: green
blueValue: blue '
v' "Set the color map index for anInteger to the given red green and
blue values.
Create a2 notifier if any of the values is out of range. Answer
nil if the index '

is not valid on the current system."

<primitive: 246>
(red < 0 or: [green < 0 or: [blue < 0]]) ifTrue: [~self

primitiveFailed].

: 5,108,770
177 178

(red > self maxGunValue or: [green > self maxGunValue or: ([blue >

self maxGunValue)]l)
ifTrue: [*self primitiveFailed].

“yalues are ok, since the primitive failed it must be because the
:ndex is invalid"®

~nil!

setColorMapEntry: anInteger toRedValue: red greenValue: green bluevalue:
blue '

| myInteger redT blueT greenT |

"Set the CLUT entry at énInteger to the given red green and blue
values. '

Create a notifier if any of the values is out of range. Answer
nil if the index

is not valid on the current system."

*patch supplied by Beckmann since the primitive accesses the map
backward (at least as read by this category's other methods and the
KLUTZ and Control Panel desk accessories.™

"Tests also supplied by Beckmann since the primitive does not work
if red green and blue zre not of class Integer; it produges no error and
does not change the CLUT. If the objects set for red green and blue do

not understand asInteger conversion, NOW an error will result."

myInteger _ (255 - anlnteger) aslnteger.

"myInteger _ anInteger."

redT _ red aslInteger.

blueT _ blue asiInteger.

greenT _ green aslnteger.

self primativeSetColorMapEntry: ﬁyInteger toRedvValue: redT

greenValue: greenT blueValue: blueT! !

. e s me me e me e e m— e - e - e e me- ame W

ColorDevice class

instanceVariableNames: ''! .
1ColorDevice class methodsFor: 'class initialization'!

initialize

5,108,770
179 180

"Initialize class variables."

"ColorDevice initialize"
self bitsPerPixel: 8.
MaxGunValue _. self getMaxGunValue.

self maxMapIndex: 255.! !
!ColorDevice class methodsFor: 'accessing'!
bitsPerPixel

~“BitsPerPixel!

bitsPerPixel: anlnteger
"Sent only by ColorDevice class initialize"

BitsPerPixel _ anlInteger!
maxGunValue

~MaxGunValue!
maxMapIndex

*MaxMapIndex!

maxMapIndex: anInteger
"Sent only by ColorDevice class initialize"

MaxMapIndex anInteger! !

!{ColorDevice class methodsFor: ‘examples'!

displéyMap »
"Draw current ColorMap DIRECTLY onto the display"
"ColorDevice displayMap"
|form ba x y rand val bb cd bitsPerPixel maxMapIndex row |
cd _ ColorDevice new.

bitsPerPixel _ ColorDevice bitsPerPixel.

5,108,770
181 182

maxMapIndex _ ColorDevice maxMapIndex+l.
row _ maxMapIindex sqgrt truncated.
form _ Form extent: (l16*bitsPerPixel) € (16).
"Here, a ByteArray is used instead of a WordArray"
ba _ ByteArray new: (16*16*bitsPerPixel) // 8..
form extent: (l6*bitsPerPixel) €@ 16 offset: 0G0 bits: ba.
x _ 0.
1l to: row do: [: i |}
1 to: row do: [:3 |
ba atallPut: x.
x x+1.

cd displayForm: form onFrameBufferAt: (i*16)C(j*16)]).

example

"Draw colored lights on the display and make them change by

changing the color map."

"ColorDevice example"

{form ba x y rand val bb cd bitsPerPixel maxMapIndexrow
maxMapIndex row maxGunValuel|

maxGunValue _ self maxGunValue.

cd _ self new.

bitsPerPixel _ self bitsPerPixel.

maxMapIndex _ self maxMapIndex+l.

form _ Form extent: (l6*bitsPerPixel) € (16).

row _ maxMapIndex sqrt truncated.

~ ba _ ByteArray new: (16*16*bitsPerPixel) // 8.
form extent: (16*bitsPerPixel) @ 16 offset: 0RO bits: ba.
x _ 0.

i

1 to: row do: {: i |
1 to: row do: [:3 |
ba atAllPut: x.
x _ x+l.
cd displayForm: form onFrameBufferAt: (i*16)€(j*16)]].
rand __ Random new.
bb _ [((rand next * maxGunValue + 0.5) rounded
min: maxGunValue -1) 1].

[Sensor anyButtonPressed] whileFalse:

5,108,770

183 ' o 184
[ed _
setColorMapEntry: (((rand next * maxMapIndex + 0.5) rounded
min: (maxMapIndex
- 2))
max:
5)
toRedValue: bb value
greenValue: bb value
blueValue: bb value].
bb _ nil! !

!ColorDevice class methodsFor: 'primitives'!

.getMaxGunValue

"Answer the largest possible value for each gun (red, green, blue)
fo} _

color map entries."

"Sent only by ColorDeive class initialize"

<primitive: 247>

"For systems without the primitive, answer 0"

~0! !
!ColorDevice class methodsFor: 'private'!

computeMaxMapIndex .

5
"Nobody sends this message"
| index max colorDevice value |

colorDevice _ self new.
index _ 0.
max _ self maxGunValue.
[value _ index even ifTrue: [max) ifralse: [0].
(colorbevice
setColorMapEntry: index
toRedvValue: value
greenValue: value
blueValue: value) == nil)

whileFalse: [index _ index + 1].

5,108,770
185 186

~index - 1! !
ColorDevice initialize!
View subclass: #SLCCcloredBoxesView
instancevariableNames: 'cal device '
classVariableNames: ''
poolDictionaries: '!
category: ‘Color-Interface'!
SLCColoredBoxesView comment:
‘*This class is used in the Gauged Patch, three by three and N by N

browsers'!
tSLCColoredBoxesView methodsFor: ‘scheduling'!
buildAndassembleForInsertion

"build the subviews and arrange them in a view for insertion. 10

by 10 matrix"

it |

it _ self
buildAndAssembleForInsertionIndexBase: 10
rows: 10
columns: 10.

~it!

buildAndAssembleForInsertionIndexBase: baselnteger rows: rowlnteger
columns: columninteger

| topView cd gray baselndex rowMax columnMax boxWidth boxHeight
thisRow thisColumn thisIndex box |

"build the subviews and arrange them in a view for insertion®

topView _ SLCColoredBoxesView new model: self.

topView borderWidth: 1.

cd _ Colorbevice new.

gray _ (cd maxGunvalue) // 2.

5,108,770
187 188

baselndex _ baselnteger.
rowMax _ rowlInteger.
columnMax _ columnlnteger.
boxWidth _ l/columnMax.
boxHeight _ 1/rowMax.

1 to: rowMax do: [:row]

1 to: columnMax do: [:column |

thisRow _ row -1.

thisColumn _ column =~ 1.

thislIndex _ baselndex + thisColumn'+ (thisRow*columnMax) .
box _ SLCColoredRectangle new.

box mapIndex: thisIndex.

cd setColorMapEntry: thisIndex toRedValue: ((60000) asInteger)

greenvValue: (60000-(thisIndex*500)) blueValue: (20000~ (thisIndex*150)).

topView addSubView: box in: (((thisColumn*boxwidth) @

{thisRow*boxHeight)) extent: (boxWidth @ boxEeight)) borderWidth: 0.

11.

~topView!

buildAndassembleForInsertionUsing: anOrderedCollection IndexBase:

baseInteger rows: rowlInteger columns: columnInteger

| topview cd gray baseIndex rowMax columnMax boxWidth boxHeight

thisRow thisColumn thisIndex box tripletIndex thisTriplet |

“build the subviews and arrange them in a view for insertion®

cal _ SLCColorCalibration new.
topView _ SLCColeoredBoxesView new model: self.,

topView borderwidth: 1.

cd _ ColorDevice new.

gray _ (cd maxGunValue) // 2.
baselIndex _ baselnteger.
rowMax _ rowInteger.

"columnMax _ columnInteger.
boxWidth _ 1/columnMax.

boxHeight _ 1/rowMax.

5,108,770
189 190

1l to: rowMax do: [:row]|

1 to: columnMax do: [:column |

thisRow _ row =-1.

thisColumn _ column - 1.

thisIndex _ baseIndex + thisColumn + (thisRow*coluﬁnMak).

tripletIndex _ thisIndex - baseIndex + 1.

thisTriplet _ cal computeGunsFrom: (anOrderedCollection at:
tripletIndex). '

box _ SLCColoredRectangle new.

box mapIndex: thisIndex.

cd setColorMapEntry: thisIndex toRedValue: (thisTriplet valuel)
greenValue: (thisTriplet wvalue2) blueValue: (thisTriplet value3).

topView addSubView: box in: (({thisColumn*boxWidth) @
(thisRow*boxHeight)) extent: (boxWidth @ boxHeight)) borderWidth: 0.

11.

~topView! !
! SLCColoredBoxesView methodsFor: 'box color accessing'!

changeBox: boxIndex to: aColorTriplet

"gself here is the BoxView"

| guns dev |
guns _ self cal computeGunsFrom: aColerTriplet.
. dev _ self device.
dev setColorMapEntry: (sélf subViews at: boxIndex) maplndex
toRedValue: guns redGun
greenValue: guns greenGun

bluevalue: guns blueGun! !

!SLCColoredBoxesView methodsFor: ‘calibration access'!
cal o

cal isNil ifTrue:[cal _ SLCColorCalibration new.].

~cal!

device

device isNil ifTrue:[device _ ColorDevice new.].

~device! !

5,108,770
191 192

1S1CColoredBoxesView methodsFor: 'releasing'!

release
cal _ nil.
device _ nil.
super release! !

Ve e o e m ee e e - - e e e —e- = em e = M

SLCColoredBoxesView class

instanceVariableNames: *''!

!SLCColoredBoxesView class methodsFor: 'instance creation'!

on: anOrderedCollection baselndex: index rows: rowInteger columns:
coiumnlnteger
| v boxView aView |
v _ self new.
boxView _ v .
buildAndAssembleForinsertionUsing:
anOrderedCollection
IndexBase: index
rows: rowlnteger
columns: columnInteger.
aview _ View new. -
aView addSubView: boxView,
“aview!
openOn: anOrderedCollection baseIndex: index rows: rowlnteger columns:
cdlumnInteger
| v boxView topView |
v _ self new.

boxView _ v
vuildandAssembleForInsertionUsing:

anOrderedCollection IndexBase: index
rows: rowlnteger
columns: columninteger.
topView _ StandardSystemView

model: self

5,108,770
193 194
label: 'General!

minimumSize: 250 @ 250,
topView cacheRefresh: false.
topView borderWidth: 1.
topView
addSubView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 2.

topView controller open! !
!SLCColoredBoxesView class methodsFor: 'examples'!

example

"SLCColoredBoxesView example"

I v topView boxView |

v _ self new.

boxView _ v buildAndAssembleForInsertion.

topview _ StandardSystemView
model: self
label: 'ColoredBoxesView-Example'
minimumSize: 250 @ 250,

. topView cacheRefresh: false.
topView borderWidth: 1.

topView
addSubView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 2.

topView controller open!

example2

"SLCColoredBoxesView example2"

| v topView boxView rowInteger columnInteger string |

string _ FillInTheBlank réquest: 'Enter the number of cells in the

X direction:’'.

columninteger _ String asNumber.

5,108,770
195 196

string _ FillInTheBlank request: 'Enter the number of cells in the
y direction:'.

rowlnteger _ string asNumber. '

rowlnteger * columnInteger > 100 ifTrue: [self error: 'Cannot do

more than 100!!'].

v _ self new.
boxView _ v
buildAndAssembleForInsertionIndexBase: 10
rows: rowlnteger
. columns: ceolumnlnteger.
topView _ StandardSystemView
model: self
label: 'ColoredBoxesView Example'
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderWidth: 1.
topview
addsSubView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 2.

topView controller open!

example3 _
“SLCColoredBoxesView example3"
“this shows how to change a boxe at a particular index to a color

-

corresponding to a particular colorTriplet through the calibration and

the device."
| v topView boxView rowlInteger columninteger st:ing tr |

string _ FillInTheBlank request: 'Enter the number of cells in the
x direction:'. '

‘columnInteger _ string asNumber.

string _ FillInTheBlank request: 'Enter the number of cells in the
y direction:'.

rowInteger _ string asNumber.

5,108,770
197 . 198

rowlnteger * columninteger > 100 ifTrue: [self error: 'Cannot do

more than 100!!'].

v o_ self new.
boxView _ v
buildAndAssembleForInsertionIndexBase: 10
rows: rowlnteger
columns: columnInteger.
topView _ StandardSystemView
model: self
label: ‘'ColoredBoxesView Example'
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderWidth: 1.
topView

addSubView: boxView
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)

borderWidth: 2.
"Here is how you can change the color of a box:"

tr _ SLLabHunterColor new.

tr L: 70.
tr a: 10.
tr b: 20.

boxView changeBox: 1 to: tr.

topView controller open! !

ColorFormView subclass: #SLCColoredRectangle
instanceVariableNames: 'mapIndex '
classVariableNames: ‘'

e

poolDictionaries:

category: 'Color-Interface'!

'SLCColoredRectangle methodsFor: ‘composing'!

displayView
"Display my contents”

|displayBox lastTop |

5,108,770 _
199 200

displayBox _ self insetDisplayBox.

~self £ilIIn: Display

inRectangle: (displayBox origin corner: displayBox corner)!

£ilIIn: aMedium inRectangle: aRectangle

"Fill in aRectangle with the bar color."

| ext displayForm |
ext _ aRectangle extent.
ext _ (ext x * ColorDevice bitsPerPixel) @ ext y.

extent _ self insetDisplayBox extent.

dispForm _ Form

extent: (self insetDisplayBox width * ColorDevice
bitsPerPixel)
@ (self insetDisplayBox height).

self setMaplndex. "Fill in all form bits with maplIndex value”

displayForm _ self dispForm.

displayForm extent: ext offset: 080 bits: displayForm bits.:

ColorDevice new displayForm: displayForm onFrameBufferAt:

aRectangle origin!

setMapIndex

| bits pat bitsPerPixel index|
bitsPerPixel _ ColorDevice bitsPerPixel.
index _ self mapIndex.

pat _ index.

(16 // bitsPerPixel) -~ 1 timesRepeat: ([pat _ (pat bitShift:

bitsPerPixel) + index].
bits _ dispForm bits.
1l to: bits size do: [:1i | bits at: i put: pat]! !

!S1LCCcloredRectangle methodsFor: 'accessing'!

mapIndex
"return the value of maplIndex.
For a description of this instance variable, see the comment

in the accessing method 'mapIndex:'."

5,108,770
201 202

“mapIndex!

maplndex: aParameter
"set the value of mapIndex.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
mapIndex _ aParameter! !
!SLCColoredRectangle methodsFor: 'releasing!'!

release
mapIndex _ nil.
super release! !
SLObject subclass: #SLCColorCalibration
instanceVariableNames: '!
classVariableNames: 'BlueGammaTable BX BY BZ GreenGammaTable GX GY
G2 RedGammaTable RX RY RZ Xb Xg Xr Yb Yg ¥Yr 2Zb Zg 2r '
poolDictionaries: '!

category: 'Color-Interface’!

!SLCColozrCalibration methodsFor: 'gun computation'!

computeGﬁnsFrom: aColorTriplet
| ctXYZ ct¥xy guns er eg.eb xy 2z |
ctX¥Z _ aColorTriplet asXY2.
x _ ctX¥2Z2 X.
y _ CtXYZ Y.
z _ CtXYZ Z.
ctYxy _ ctXY2 aSny.
guns _ SLRGBGunsColor new.
{ctY¥xy producable) ifFalse:[guns redGun:O;greenGun:O;blﬁeGun:0. ~guns].
"compute using inverted matrix, er,eg,eb"
er _ (((x)*(2.167))+{((y)*(-0.937))+((2)*(~0.344)))/(70.692).
eg (((x)*(-1.264))+((y)*(2.225))+((2)*(0.066)))/(97.475).

eb _ (((x)*(0.097))+((y)*(-0.288))+((2)*(1.278)))/(117.234).
({er > 1)1 (eg>l) | (eb>1))ifTrue: [er_eg eb_0].

5,108,770
203 204

“compute using gamma correction, redgun, greengun and bluegun"
"Note that the gamma correction tables are set up for 0 to 253 gun
values and that the primitive Smalltalk access is 0-65535"

guns redGun: ((self redGunOf: er)*256).

guns greenGun: ((self g:eehGunOf: eg)*256) .

guns blueGun: ((self blueGunOf: eb)*256).

~guns!

oldComputeGunsFrom: aColorTriplet

| ctXYZ ct¥xy guns er eg eb |
ctXYZ _ aColorTriplet asX¥YZz.
ctYxy _ ctX¥YZ as¥Yxy.
(ct¥xy producable) ifFalse:[”nil].
guns _ SLRGBGunsColor new.
"compute using inverted matrix, er,eg,eb"
er _ (((ctXYZ X)*(self rX))+(({ctXYZ Y)*(self rY))+((c£XYz Z)* ({self
r2)))/ (self capNr). ‘
eg _ (((ctXYZ X)*(self gX))+((ctXYZ Y)*(self g¥))+((ctX¥2Z Z)*(self
g2)))/ (self capNg).
eb _ (({ctX¥2 X)*(self bX))+((ctXYZ Y)*(self bY))+ ((ctX¥YZ 2)* (self
bZ)))/ (self capNb). ‘
{(er > 1)1 (eg>l) | (eb>1))ifTrue: [er_eg_eb 0].
"compute using gamma correction, redgun, greengun and bluegun"
"Note that the gammaz correction tables are set up for 0 to 255 gun
values and that the primitive Smalltalk access is 0-65535"
guns redGun: ((self redGunOf: er)*256).
guns greenGun: ((self greenGunOf: eg)*256).
guns blueGun: ((self blueGunOf: eb)*256).

~guns! !
1S1CColorCalibration methodsFor: 'gamma correction'!

blueGammaTable

-

~self species blueGammaTable!

blueGunOf: aFloat

| gunval num |

5,108,770
205 206

"This method returns the blue gun value given the relative

excitation function

value aFloat."
(aFloat > 1.0)ifTrue:[num _ 1.0]ifFalse:[num _ aFloat].

' gunVal _ self interpolateForY¥: num on: BlueGammaTable.
{gunval isNil)ifTrue:[~0)}ifFalse:[“gunVvall}!

’ greenGammaTable
~self specigs greenGammaTable!

greenGunOf: aFloat

"This method returns the green gun value given the relative

excitation function

value aFloat."

| gunvVal |
aFloat > 1.0
ifTrue: [~0]
ifFalse: '
{gunVal _ self interpolateFor¥Y: aFloat on:
GreenGammaTable.
gunVal isNil
ifTrue: [~0]
ifFalse: [“gunVal}]!

interpolateForY: aFloat on: anOrderedCollection
| gt 1o hi ratio val num |
gt _ anOrderedCollection.
lo _ nil.
éFloat <0
ifTrue: {num _ 0]
ifralse: [aFlcat > 1.0
ifTrue: [num _ 1.0]
ifFalse: [num _ aFloat]].

hi _ nil.

"Here, hi being nil signals we haven't found the bracket.

makes the do:

This

5,108,770
207 208

execution very short once we've found the bracketing points& We
look at the
current point. If it's not the upper bracketing point, it may be
the lower point
sb we put it into lo."™
gt do: [:thisElement | hi isNil ifTrue: [thisElement y >= aFloat
ifTrue: [hi _ thisElement])
ifralse: [lo _ thisElement]]].
"If the first element's y value was less than the input value, we
return a gun
value of nil"
lo isNil ifTrue: (~nil].
"Now lo contains the element with an y less than the input value
and hi, the
element above it in y value"
(hi isNil)ifTrue:[val lo x]ifFalse:[ratio _ aFloat - lo y / (hi y
- lo y).
val _ lo x + (ratio * (hi x - 1o x))]).

~yval!

redGammaTable

~self species redGammaTable!

.redGunOf: aFloat
| gunval num |
"This method returns the red gun value given the relative
excitation function
value aFloat."
aFloat > 1.0 _
ifTrue: [num _ 1.0]'
ifrFalse: [aFloat < 0
ifTrue: [num _ 0]
ifFalse: [num _ aFloat]].
gunVal _ self interpolateForY: aFloat on: RedGammaTable.
gunVal isNil .
ifTrue: [~0]
ifFalse: [“gunVal]}! !

!SLCColorCalibration methodsFor: 'phosphor chromaticities'!

5,108,770

209 210
bX

"This is the blue phosphor contribution for 2 for the IKEGAMI 16
inch SuperMac dispiay obtained by inverting the chromaticity matrix."
~ 0.087!

by
"This is the blue phosphor contribution for Y for the IKEGAMI 19

inch SuperMatc display obtained by inverting the chromaticity matrix."
~ -0.288!

bz
"This is the blue phosphor contribution for 2 for the IKEGAMI 19

inch SuperMac display obtained by inverting the chromaticity matrix."
~1.278!

gX
"This is the green phosphor contribution for X for the IKEGAMI 19
inch SuperMac display obtained by inverting the chromaticity matrix."

~ =1.264!

gY
"This is the green phosphor contribution for Y for the IKEGAMI 18
inch SuperMac display obtained by inverting the chromaticity matrix."

~ 2.,225!

gz

"This is the green phosphor contribution for Z for the IKEGAMI 19
inch SuperMac display obtained by inverting the chromaticity matrix."

~ 0.066!

rX
"This is the red phosphor contribution for X for the IKEGAMI 19

inch SuperMac display obtained by inverting the chromaticity matrix."
~2.167!

rY

"This is the red phosphor contribution for Y for the IKEGAMI 19
inch SuperMac display obtained by inverting the chromaticity matrix."
~ -0.937!

211
rz

5,108,770
212

"This is the red phosphor contribution for Z for the IKEGAMI 19

inch SuperMac display obtained by
~ =0.344!

xb

"This is the x value of the
SuperMac display"

~ 0.152!

xg

"This is the x value of the
SuperMac display"

~ 0.280!

Xr
"This is the x value of the
SuperMac display"
~ 0.618!

yb

"This is the y value of the
SuperMac display" ‘

~ 0.063!

¥g
"This is the y value of the

SuperMac display"”
~ 0.605!

yr
"This is the y value of the
SuperMac display"
~ 0.350!

zb

"This is the z value of the
SuperMac display™

~ 0.785!

inverting the chromaticity matrix.™

blue phosphor for the IKEGAMI 19 inch

green phosphor for the IKEGAMI 19 inch

red phosphor for the IKEGAMI 19 inch

blue phosphor for the IKEGAMI 1S inch

green phosphor for the IKEGAMI 19 inch

red phosphor for the IKEGAMI 19 inch

blue phosphor for the IKEGAMI 19 inch

5,108,770
213 214
zg

uThis is the z value of the green phosphor for the IKEGAMI 18 inch
SuperMac display"
~ 0.115!

zr

"This is the z value of the red phosphor for the IKEGAMI 189 inch
SuperMac display"™

~ 0.032! !

'!SLCColorCalibration methodsFor: 'gun normalization factors'!

capNb
"This returns the blue gun normalization"
W~ 124,.339*2 from blue tile"™

~117.234 "from white is all guns high"!

capNg
"This returns the green gun normalization",
"~ 70.816*2 from blue tile":

~97.475 "from white is all on him™!

capNr
"This returns the red gun normalization"
w~ 35.685*2 from blue tile"
~70.682 "from white is all on hi"!

N
“This returns the overall normalization"
~ 225!

nb
"This returns the blue gun normalization"
~ 0.42236!

ng

"This returns the green gun normalization"
~ 0.19689!

215

nr

5,108,770
216

"This returns the red gun normalization"

~ 0.38075!

Ve e o e mee mem o= e e e m—- - - m- == m- oa ==

SLbColorCalibration class

instanceVariableNames: '‘'!

'SLCColorCalibration class methodsFor: 'gamma table setup'!

setupBlueGamma

| gt top |

gt _ OrderedCollection new: 27.

"collection is ordered in ascending relative excitation values™"

"top is the photometric reading at gun value 255"

"the gamma correction is stored as a set of (gun@excitation value)

points"

top _ 1049

gt add: 0 @ (260 / top).

gt add: 10
gt add: 20
gt add: 30
gt add: 40
gt add: 50
gt add: 60
gt add: 70
gt add: 80
gt add: S0
gt add: 100
gt add: 110
gt add: 120
gt add: 130
gt add: 140
gt add: 150
gt add: 160
gt add: 170
gt add: 180
gt add: 190

® wm®® D e ® e ®

® ® ®m® ® @ M0 ®m® ® ® W

(261
(262
(268
(278
(290
(307
(323
(345
(368
(392
(422
(452
(489
(521
(558
(595
(635
(678
(720

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/

top).
top) .
top).
top).
top).
top).
top) .
top).
top).
top).
top).
top).
top).
top).
top).
top).
top).
top) .
top).

5,108,770

217 218
gt add: 200 @ (765 / top).
gt add: 210 @ (818 / top).
gt add: 220 @ (865 / top).
gt add: 230 @ (809 / top).
gt add: 240 @ (965 / top).
gt add: 250 @ (1015 / top).

gt add: 255 @ (top / top).
BlueGammaTable _ gt!

setupGreenGamma
I gt top |
. gt _ OrderedCollection new: 27.
“collection is ordered in ascending relative excitation wvalues"
"top is the photometric reading at gun value 255"

"the gamma correction is stored as a set of (gunfexcitation value)

peints"
top _ 2227,
gt add: 0 @ (683 / top).
gt add: 11 @ (684 / top).
gt add: 16 @ (6839 / top).
gt add: 30 @ (696 / top).
gt add: 40 € (716 / top).
gt add: 50 @ (738 / top).
gt add: 60 @ (774 / top).
gt add: 70 @ (809 / top).
gt add: 80 @& (848 / top).
gt add: 90 @ (900 / top).
gt add: 100 @ (S48 / top).
gt add: 110 & (1002 / top).
gt add: 120 @ (1063 / top).
gt add: 130 @ (1130 / top).
gt add: 140 @ (1193 / top).
gt add: 150 @ (1261 / top).
gt add: 160 @ (1334 / top).
gt add: 170 @ (1418 / top).
gt add: 180 @ (1499 / top).
gt add: 190 @ (1586 / top).
gt add: 200 @ (1667 / top).

5,108,770

219 220
gt add: 210 @ (1764 / top). '
gt add: 220 @ (1856 / top).
gt add: 230 @ (1939 / top).
gt add: 240 @ (2035 / top).
gt add: 250 @ (2146 / top).

gt add: 255 @ (top / top).

GreenGammaTable _ gt! & ,

setupRedGamma
I gt top |
gt _ OrderedCollection new: 27.
"collection is ordered in ascending relative excitation values"
"top is the photometric reading at gun value 255"

"the gamma correction is stored as a set of (gun@excitation value)

points"
top _ 2672.
gt add: 0 @ (1139 / top).
gt add: 10 @ (1142 / top).
gt add: 20 @ (1152 / top).
gt add: 30 @ (1168 / top).
gt add: 40 @ (118% / top).
gt add: 50 @ (1216 / top).
gt add: 60 @ (1268 / top).
gt add: 70 € (1314 / top).
gt add: 80 @ (1367 / top).
gt add: 90 @ (1425 / top).
gt add: 100 @ (1467 / top).
gt add: 110 @ (1520 / top).
gt add: 120 @ (1592 / top).
gt add: 130 @ (1646 / top).
gt add: 140 @ (1705 / top).
gt add: 150 €@ (1777 / top).
gt add: 160 @ (1843 / top).
gt add: 170 @ (1931 / top).
gt add: 180 @ (2002 / top).
gt add: 190 @ (2094 / top).
gt add: 200 @ (2164 / top).
gt add: 210 @ (2249 / top).

5,108,770
221 222
gt add: 220 € (2344 / top).

gt add: 230 @ (2422 / top).

gt add: 240 @ (2507 / top).

gt add: 250 @ (2625 / top). -
gt add: 255 @ (top / top).

. RedGammaTable _gtt !

1SLCColorCalibration class methodsFor: ‘class initialization'!

initialize
self setupRedGamma.
self setupBlueGamma.

self setupGreenGamma.! !
1SLCColorCalibration class methodsFor: ‘'accessing'!

blueGammaTable

~“BlueGammaTable!

greenGammaTable

~“GreenGammaTable!

redGammaTable

~RedGammaTable! !

SLCColorCalibration initialize!

S1Object subclass: ¥#¥SLCMaplndex
instanceVariableNames: 'index '
classVariableNames: ‘! V
poolDictionaries: *'!

category: 'Color-Interface'!

!SLCMapIndex methodsFor: 'accessing'!

index
"return the value of index.
For a description of this instance variable, see the comment

in the accessing method ‘index:'."

5,108,770
223 224

~index!

index: aParameter
"set the value of index. .
aParameter is expected to be of the class aClass.
This instance variable is used to <explanation>."

index _ aParameter!
mapIndex
“return the value of index.
For a description of this instance variable, see the comment

in the accessing method ‘index:'."

~index! !
Below is the listing for file 'Color Spaces.st' in standard

fileIn/fileOut format:

SLColorTriplet subclass: #SLFMCIIColor
instanceVariableNames: '!'
classVariableNames: '!
poolDictionaries: '!

category: 'Color Spaces'!
! SLFMCIIColor methodsFor: 'color space accessing'!
colorSpace

"return a symbol denoting my color space"

~#FMCII! !

SLColorTriplet subclass: #SLXYZColor
instanceVariableName§: vt
classVariableNames: '
poolDictionaries: '!'

category: 'Color Spaces'!

225
}SLXYZColor methodsFor:

valuelRange

"return the range
~0 to: 120!

value2Range

"return the range
~“0 to: 120!

value3Range

- "return the range
~0 to: 120! !
1S1LXY2Color methodsFor:

asCIELAB

5,108,770

'value range accessing'!

for value 1"

for value 2"

for value 3"

'conversion'!

"From Gardner colorimeter maznual®

{ ¢ cr¥Y crX cxr2 |

¢ _ SLCIELABColor new.

crY _ (self Y 1n * (1 / 3)) exp.

cexX _ ((1.02 * self X) 1n * (1 / 3)) exp.

crz _ ((0.8467 * self Z) 1ln * (1 / 3)) exp.

c elStar: 24.99 * crYy - 16.

¢ aStar: 107.7 * (crX - crY).

¢ bStar: 43.09 * (cxY¥ - crZ).

~e!

asLabHunter

1 e sy |

C _ SLlLabHunterColor new.

sy _ ((self Y)sqrt).
¢ L: (10.0 * sy).

226

5,108,770

227 228
c a: ({(1.02 * (self X))-(self Y))*(17.5/sy)).

c b: { ((self Y)~(0.8467*(self 2)))*(7.0/sy)).

~c!
asXiyz
~self!
asYxy
| n¥xy total |

. - n¥xy _ SLYxyColor new.
n¥xy Y: self Y.
total _ self X + self Y + self Z.
(total = 0)ifFalse: [n¥xy x: self X / total.
n¥xy y: self Y / totallifTrue:[n¥xy x: O0.n¥xy y: 0].

“nY¥xy! !

'SLXYZColor methodsFor: 'accessing'!

X
"returns the value of X for this triplet™
~ self valuel! -
X: aFloat
"sets the value of X for this triplet™
self valuel: aFloat.!
Y
"returns the value of Y for this triplet™
~ self value2!
Y: aFloat
"sets the value of Y for this triplet"
self value2: aFloat.!
2

"returns the value of Z for this triplet"

» self value3!

5,108,770
229 230
Z: aFloat

vsets the value of 2 for this triplet"

self value3: aFloat.! !
1SLXY2Color methodsFor: 'color space accessing'!
.colorSpace
"return a symbol denoting my color spaée"
~FXYZ!
colorSpacelabels
[es |
nreturn a collection of labels for displaying my color space

variables™"

cs _ OrderedCollection new: 3. -

cs add: #X.
cs add: #¥Y.
cs add: #2.
~cs! !

SLColorTriplet subclass: #SLRGBGunsColor

instanceVariableNames: ''

classVariableNames: ‘'

poolDictionaries: '

category: 'Color Spaces’'!
SLRGBGunsColor comment:
t117his class represents the color space of the monitor''s gun values.
These values are commonly called red green and blue and those terms are
used here. All color spaces must respond to conversion messages that

result in gun values to be displayed.''"'!

1 SLRGBGunsColor methodsFor: ‘'‘color space accessing'!

colorSpace

{ es |

5,108,770
231 232

"return a symbol denoting my color space.

I am the red, green and blue monitor gun values."

~#RGBGuns!

colorSpaceLabels
T lest
"return a OrderedCollection of three strings denoting my color
space.

I am the red, green and blue monitor gun values."
cs _ OrderedCollection new: 3.

cs add: #Rg.

cs add: #Gg.

cs add: #Bg.

~cst ! .

! SLRGBGunsColor methodsFor: 'value range accessing'!
valuelRange

"return the range for value 1"
~0 to: 65535! -

value2Range

"return the range for value 2"
~0 to: 65535!

value3Range

"return the range for value 3"
“0 to: 65535! !
! SLRGBGunsColor méthodsror: 'accessing'!
blueGun

*self value3!

5,108,770
233 234

blyeGun: aninteger
self value3: anInteger!
greenGun

~self value2!

greenGun: anlInteger
self value2: aninteger!
redGun

~self valuel!

redGun: anInteger

self valuel: anInteger! !

Moe e = wrer ovem wer e o mer e e me e e wmm e e e-]

SLRGBGunsColor class

instancevariableNames: ''!

I SLRGBGunsColor class methodsFor: 'instance creationt!

R: redPercent G: greenPercent B: bluePercent
| zgb |

"create and return a new instance of me"

rgb _ self new.

rgb percentRed: redPercent.

rgb percentGreen: greenPercent.
_rgb percentBlue: bluePercent.

~rgb! !

SLColorTriplet subclass:. #SLCIELUVColorx

instancevariableNames: '*

5,108,770 ,
235 236

classVariableNames: '!'
poolDictionaries: '!
‘category: 'Color Spaces'!

!SLCIELUVColor methodsFor: 'color space accessing!'!

colorSpace
“return a symbol denoting my color space"

~“¥CIELUV! !

SLColorTriplet subclass: #SLCIELABColor
instanceVariableNames: '!'
classVariableNames: '!
poolDictionaries: '!'
category: 'Color Spaces'!

!'SLCIELABColor methodsFor: 'conversion'!

asCIELAB

~self! 1
!SLCIELABColor methodsFor: ‘color space accessing'!
colorSpace

“"return a symbol denoting my cglor space"
~#CIELAB! !
!SLCIELABColor methodsFor: 'accessing'!-

aStar

~ value2!

5,108,770

237 238

aStar: aFloat

self value2: (aFloat)!

bStar

~ wvaluel!

bStar: aFloat

self value3: (aFloat)!
elStar

~ valuel!

elStar: aFloat

self valuel: (aFloat)! !

SlColorTriplet subclass: #SLYxyColor
instanceVariableNames: *''
classVariableNames: '‘
poolDictionaries: '' _

category: ‘'Color Spaces'! .

ISLYxyColor methodsFor: 'value range accessing'!

valuelRange

“return the range for value 1"
~0 to: 100!

value2Range

"return the range for value 2"
~0 to: 1.0!

value3Range

. "return the range for value 3"

~0 to: 1.0! !

: 5,108,770
239 240

!SLYxyColor methodsFor: 'conversion'!

asXYz
| ¢ |

¢ _ SLXYZColor new.

self y = 0
ifTrue:
e X: 0. ’
c 2: 0]
ifFalse:

[c X: self x * self Y / self y.
c 2Z: ((self Y / self y) * (1.0 - self x - self y))].
c Y: self Y,

~c!

asYxy

~self! !

!1SLYxyColor methodsFor: 'accessing'!

X

~self valuel2!

x: aFloat

~self value2: aFloat!

Y

~self valuel!

Yy

~self value3!

y: aFloat

“sélf value3: aFloat!

Y: aFloat

*self valuel: aFloat! !

5,108,770
| 241 242
18LYxyCeclor methodsFor: 'testing'!

producable

"This tests the x and y values for inclusion within the gamut of
the monitor

phosphors.™

"The algerithm is based on testing for the x,y point in question
being above or

below the lines connecting the phosphor chromaticity points. The
test answers

True if the X,y point in question lies inside or on the edge of
the triangle, False

‘otherwise."

"These must be examined for validity of 'above' and 'below!’
decisions for each

new CRT phosphor set"

| cal slopebg slopegr slopebr blkbg blkgr blkbr abovebg abovegr

belowbr outside inside |
cal _ SLCColorCalibration new.

"Here we calculate the slopes of the three lines connecting the
chromaticity

points for the phosphors.™

slopebg _ cal yg - cal yb / (cal xg - cal xb).

slopegr _ cal yr - cal yg / (cal xr - cal xg).

slopebr _ cal yr - cal yb / (cal xr - cal xb).

"Here we set up line equations in blocks for evaluation®
blkbg _ [:x | slopebg * (x - cal xb) + cal yb].
blkgr _ [:x | slopegr * (x - cal xg) + cal yg).
blkbr _ [:x | slopebr * (x -~ cal xb) + cal yb].

“"Note that the two sets of values/blocks above should eventually

be made

instance variables of the colorcalibration.™

5,108,770
243 244

"Here we evaluate the point's positions relative to the lines

using the blocks.™
abovebg _ self y > (blkbg value: self x).
abovegr _ self y > (blkgr value: self x).
belowbr _ self y < (blkbr value: self x).
outside _ abovebg | abovegr | belowbr.
inside _ outside not.

~inside! !
!SLYxyColor methodsFor: 'color space accessing'!
colorSpace
"return a symbol denoting my color space"
~#Yxy!
colorSpacelabels
| es |
"return a collection of labels for displaying my color space

variables™

¢s _ OrderedCollection new: 3.

cs add: #Y.
cs add: #x.
cs add: #y.
ncst

SLColorTriplet subclass: #SLLabHunterColor

instanceVariableNames: '!

classVariableNames: ''
poolDictionaries: '

category: 'Color Spaces'!

1SLLabHunterColor methodsFor: 'conversion'!

asLabHunter
“return a new color triplet converted to Lab Hunter coordinates"

5,108,770
245 246

~self!

asXY2

L))

| newColor |
"convert to the XYZ system"
newColor _ SLXYZColor new.

newColor X: (((self L)/100)*((0.5602* (self a)) + (0.9804* (self

newColor ¥Y: ((self L)*(self L))/100.
newColor Z: (((self L)/59.27)*((0.7*(self L))~-(self b))).

"~ newColor! !

!SLlLabHunterColor methodsFor: 'color space accessing'!

colorSpace

"return a symbol denoting my color space"

~“#LabHunter!

colorSpacelabels

1 es |

"return a collection of labels for displaying my color space

variables"

cs _ OrderedCollection new: 3.
cs add: #Lh.
cs add: #ah.
cs add: #bh.

~es!

!SLLabHunterColor methodsFor: 'accessing'!

"return the value of a.
result is expected to be of the class Float.

This variable is used to hold the a value of a Hunter lab color

space triplet."

5,108,770
247 248

~self value2!

a: aFloat
"set the value of a.
aFloat is expected to be of the class Float.
This variable is used to hold the a value of a Hunter lab color

space triplet. This value ranges from -60 to +60."

self value2: aFloat!

“return the value of b.
result is expected to be of the class Float.
This variable is used to hold the b value of a Hunter Lab color

space triplet."

~self value3!

b: aFloat
"set the value of b.
aFloat is expected to be of the class Float.
This variable is used to hold the b value of a Hunter Lab color

space triplet. This value ranges from =60 to +60."

self value3: aFloat!

*return the value of L.
result is expected to be of the class Float.
This variable is used to hold the L value of a Hunter lLab color

space triplet."
~self valuel!

L: aFloat
"set the value of a.
aFloat is expected to be of the class Float.
This variable is used to hold tﬁe L value of a Hunter Lab coler

space triplet. This value ranges from -60 to +60.™ .

5,108,770
249 250

self valuel: afFloat! !

‘SLLabHunterColor methodsFor: 'value range accessing'!

valuelRange

"return the range for value 1"
~0 to: 100!

value2Range

"return the range for value 2"

~=60 to: 60!

value3Range

“return the range for value 3"

~~60 to: 60! !

SLlLabHunterColor subclass: #SLLabHunterRColor
instanceVariableNames: '
classVariableNames: '°
poolDictionaries: '!
category: ‘'Color Spaces'!

!SLLabHunterRColor methodsFor: 'value range accessing'!

valuelRange

"return the range for value 1"
~50 to: 90!

value2Range

"return the range for value 2"

~=15 to: 15!

5,108,770
251 252

valueBRénge

"return the range for value 3"

~0 to: 301 !
Below is the listing for file 'SLColorTripletBrowser.st' in standard

fileIn/fileOut format:

SLObject subclass: #SLColorTripletBrowser
instanceVariableNames: ‘colorTriplet '
classVariableNames: '!

)

poolDictionaries: '

category: ‘'Seelab Data Browsers'!

1SLColorTripletBrowser methodsFor: ‘updating'!

update: aSymbol
"handle updates™

(aSymbol = #valuel) ifTrue:[self changed: #valuel. self changed:
#guns]. |

(aSymbol = #value2) ifTrue:[self changed: #value2. self changed:
#guns].

(aSymbol = #¥value3) ifTrue:[self changed: #value3. self changed:
¥guns].

(aSymbol = #updateAll) ifTrue:| self changed: #valuel.
self changed: #value2,

seif changed: #value3.

self changed: #guns].

super update: aSymbol! !

!5LColorTripletBrowser methodsFor: 'indirect accessing'!

valuel

"get valuel from my colorTriplet"

~self colorTriplet valuel!

5,108,770

253 254
valuel: aNumber ‘

"set valuel in my colorTriplet"
"This is sent when the gauge is jerked around"

self colorTriplet valuel: ((aNumber * 100) truncated / 100) asFloat! -

valuelRange

"get the range for valuel from my colorTriplet™
~self colorTriplet valuelRange!

value2

“get value2 from my colorTriplet"
~self colorTriplet value2!

value2: aNumber

*set value2 in my colorTriplet"
self colorTriplet value2: ((aNumber * 100) truncated / 100) asFloat!
value2Range

"get the range for value2 from my colorTriplet"

~

~self colorTriplet value2Range!

value3

"get value3 from my colorTriplet"®
~self colorTriplet value3!

value3: aNumber

"set value3 in my colorTriplet" i

self colorTriplet value3: ((aNumber * 100) truncated / 100) asFloat!

value3Range

"get the range for value3 from my colorTriplet"

5,108,770
255 256

~self colorTriplet value3Range! !
1S1ColorTripletBrowser methodsFor: 'scheduling'!

buildandassembleBrowser
| topView |

*build the subviews and arrange them in a SSV for scheduling"

topView _ StandardSystemView
model: self
label: 'Color Triplet Browser'
minimumSize: 250 @ 70.
topView borderWidth: 1.

topView
addSubView:

(Labelview label: (colorTriplet colorSpacelabels at: 1))
in: (0 @ 0 extent: (1 / 3) € (1 / 4))
borderWidth: 1.

topView
addSubView: self valuelDigitGauge
in: (0 @ (1/4) extent: (5 / 21) @ (3/4))
borderWidth: 1.

topView
addSubView: self valuelBarGauge
in: ((5/21) @ (1/4) extent: (2 / 21) @ (3/4))
borderWidth: 1.

topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at:
2)) '
in: ((1/3) @ 0 extent: (1 / 3) @ (1 / 4))
borderWidth: 1.

. 5,108,770
257 258
topView

addSubView: self value2DigitGauge
in: ((1/3) @ (1/4) extent: (5 / 21) @ (3/4))
borderWidth: 1.

topView
addSubView: self value2BarGauge
in: ((12/21) @ (1/4) extent: (2 / 21) @ (3/4))
borderWidth: 1. »

topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at:

3
in: ((2/3) @ 0 extent: (1 / 3) € (1 / 4))
borderwidth: 1.
topView
addSubView: self value3DigitGauge
in: ((2/3) @ (1/4) extent: (5 / 21) @ (3/4))
borderWidth: 1.
topView
addSubView: self value3BarGauge
in: ((19/21) @ (1/4) extent: (2/21) @ (3/4))
borderWidth: 1. :
“topView!

buildAndAssembleBrowserForInsertion
| avView |

"build the subviews and arrange them in a view for insertion®
aView _ View new model: self.

aView borderWidth: 1.

aView

addSubView: (LabelView label: (self colorTriplet

: 5,108,770
259 260
colorSpacelabels at:1))

in: (0 @ 0 extent: (1 / 3) @ (1 / 4))
borderwidth: 1.

aview
addSubView: self valuelDigitGauge
in: (0 @ (1/4) extent: (5 / 21) @ (3/4))
borderwidth: 1.

aview
addSubView: seif valuelBarGauge
in: ((5/21) @ (1/4) extent: (2 / 21) @ (3/4))
borderWidth: 1.

aView
addSubview: (LabelView label: (self colorTriplet
colorSpacelabels at:2))
in: ((1/3) @ 0 extent: (1 / 3) @ (1 / 4))
borderwWidth: 1.

avView
addSubView: .self value2DigitGauge
in: ((1/3) @ (1/4) extent: éS /21y @ (3/4))
borderWidth: 1.

aView
addSubView: self value2BarGauge
in: ((12/21) @ (1/4) extent: (2 / 21) @ (3/4))
borderWidth: 1. .

avView

addSubView: (LabelView label: (self colorTriplet

colorSpacelabels at:3))
in: ((2/3) @ 0 extent: (1 / 3) €@ (1 / 4))
borderWidth: 1.

avView

addSubView: self value3DigitGauge

in:

261

({(2/3) & (1/4) extent:

5,108,770

borderWidth: 1.

avView

addSubView: self value3BarGauge
((19/21) € (1/4) extent: (2/21) @ (3/4))
borderWidth: 1.

in:

~aview! !

!SLColorTripletB:owservmethodsFor: 'subview creation'!

valuelBarGauge

~BarGaugeView

valuelDigitGauge

“DigitGaugeView

value2BarGauge

~BarGaugeView

on: self

aspect: #valuel

change: #valuel:

range: self valuelRange
orientation: #vertical
type: #bar

needleDirection: nil!

on: self
aspect: #valuel
change: #valuel:

range: self valuelRange!

on: self

aspect: #value2

change: #value2:

range: self valueZRange
orientation: #vertical
type: #bar

needleDirection: nil!

262

(5 /7 21) €@ (3/4))

5,108,770

263
value2DigitGauge
“DigitGaugeView
on: self
aspect: #value2
change: #value2:
) range: self valueZRange!
value3BarGauge
“BarGaugeView
' on: self
aspect: #value3
change: #value3:
range: self value3Range
orientation: #vertical
type: #bar
needleDirection: nil!
value3DigitGauge
“DigitGaugeView

‘on: self
aspect: #value3
change: #value3:

range: self value3Range!
!SLColorTripletBrowser methodsFor: 'release'!
release

"do some clean up"

colorTriplet removeDependent: self.

colorTriplet _ nil.

super release.!

removeDependent: anObject

"intercept this message to clean up"
self release.

-super -removeDependent: anObject! !

264

5,108,770
265 266

!SLColorTripletBrowser methodsFor: 'accessing'!

colorTriplet
“"return the value of colorTriplet.
For a description of this instance variable, see the comment

in the accessing method ‘colorTriplet:'."
“colorTriplet!

coloxrTriplet: anSLColorTriplet
| oldColorTriplet |
* "set the value of colorTriplet.
anSLColorTriplet is expected to be a subcléss of SLColorTriplet.

This instance variable is used to hold the color triplet being

browsed."
oldColerTriplet _ colorTriplet.
colorTriplet _ anSLColorTriplet.

0ldColoxTriplet isNil ifFalse:[oldColorTriplet removeDependent: self].
colorTriplet addDependent: self.! !

SlColorTripletBrowser class

instanceVariableNames: ‘''!

!SLColorTripletBrowser class methodsFor: ‘instance creation'!

on: anSLColorTriplet
| etb |

"create and return a new instance of me on anSLColorTriplet"

ctb _ self new.
ctb colorTriplet: anSLColorTriplet.
“ctb!

5,108,770
267 268
openOn: anSLColorTriplet

"create and schedule a new instance of me on anSLColorTriplet™
"SLColorTripletBrowser openOn: (SLCIELABColor new)."

"SLColorTripletBroner openOn: (SLRGBGunsColor new)."

| ctb |
ctb _ self on: anSLColorTriplet.

ctb buildAndAssembleBrowser controller open! !

Below is the listing for file 'Color Science Tools.st' in standard

fileIn/fileOut format:

SLObject subclass: #SLCGaugedPatch
instanceVariableNames: ‘'experiment ivValues triplet cost
calibratioﬁ device gunTriplet regression '
classVariableNames: ''
1

poolDictiocnaries: !

category: 'Color Science Tools'!

! SLCGaugedPatch methodsFer: 'value range accessing'!

valuelRange
| iv top |
iv _ self variables at: 1.
top _ iv max.
(top > 10000) ifTrue: (top _ 10000].

~iv min to: top!

value2Range

| dv top |

iv _ self variables at: 2.

top _ iv max.

(top > 10000) ifTrue: (top _ 10000].

*iv min to: top!

value3Range
| iv top |

iv _ self variables at: 3,

5,108,770
269 '

top _ iv max.

270

(top > 10000) ifTrue: [top _ 10000].

~iv min to: top!

value4Range
| iv top |
iv _ self variables at: 4.
tep _ iv max.
(top > 10000) ifTrue: [top _ 10000].

~iv min to: top!

valueSRange
| iv top |
iv _ self variables at: 5.
top _ iv max.
(top > 10000) ifTrue: [top _ 10000].

~iv min to: top!

valuebRange
| iv top |
iv _ self variables at: 6.
top _ iv max.
(top > 10000) ifTrue: [top _ 10000].

~iv min to: top!

value7Range
| iv top |
iv _ self variables at: 7.
top _ iv max.
(top > 10000) ifTrue: [top _ 10000].

~iv min to: top! !
! SLCGaugedPatch methodsFor: fgauge value access'!

valuel

~ self ivvValues at: 1!

valuel: aNumber

self ivValues at: 1 put: aNumber.

5,108,770
271 v
.self changed: #valuel.

272

self refigureThings.!

value2

~ self ivvalues at: 2!

value2: aNumber
self ivValues at: 2 put: aNumber.
self changed: #valuel.
self refigureThings.!

value3

~ self ivvValues at: 3!

value3: aNumber
self ivValues at: 3 put: aNumber.
self changed: #value3.
self refigureThings.!

valued

~ self ivvalues at: 4!

value4: aNumber
self ivvalues at: 4 put: aNumber.
self changed: #value4.

self refigureThings.!

value$5

~ self ivValues at: 5!

value5: aNumber
self ivValues .at: 5 put: aNumber.
self changed: #valueS.

self refigureThings.!

valuef

~ self ivValues at: 6!

5,108,770

273 274
valuef: aNumber

self ivvalues at: 6 put: aNumber.
self changed: #value6.
self refigureThings.!

value?

~ self ivValue at: 7!

value7: aNumber
self ivValues at: 7 put: aNumber.
Self changed: #value7.

self refigureThings.! !

1SLCGaugedPatch methodsFor: 'DigitGauge buildirg'!

valuelDigitGauge
~DigitGaugeView
on: self
aspect: #valuel
change: #valuel:
range: self valuelRange!
value2DigitGauge
~DigitGaugeView
on: self
éspect; #value2
change: #value2:
range: self valuelRange!
value3DigitGauge
~DigitGaugeView .
on: self

aspect: #valuel
change: #value3:

range: self value3Range!

value4DigitGauge
~DigitGaugeView

on: self

5,108,770
275 276

aspect: #valued
change: #valued:

- range: self value4Range! .

valueSDigitGauge
~DigitGaugeView
on: self
aspect: #value5
change: #valueS5:

range: self valueSRange!

value6DigitGauge
~DigitGaugeView
on: self
aspect: #valueb
. change: #value6:

range: self value6Range!

" value7DigitGauge
“DigitGaugéView
on: self
aspect: #value?
change: #value7:

range: self value7Range! !
!SLCGaugedPatch methodsFor: 'BarGauge building'!

valuelBarGauge

~“BarGaugeView

on: self

aspect: #valuel

change: #valuel:

range: self valuelRange
orientation: #vertical
type: #bar

needleDirection: nil!

value2BarGauge

277

~BarGaugeView

value3BarGauge

~BarGaugeView

value4BarGauge

“BarGaugeView

valueS5BarGauge

~BarGaugeView

5,108,770
278

on: self

aspect: #value2

change: #valuel:

range: self value2Range
orientation: #vertical
type: #bar

needleDirection: nil!

on: self

aspect: #valuel

change: #value3:

range: self value3Range
orientation: #vertical
type: #bar

needleDirection: nil!

on: self

aspect: #valued

change: #valued:

range: self valuedRange
orientation: #vertical
type: #bar

needleDirection: nil!

on: self

aspect: #¥valueb

change: #valueS:

range: self valueS5SRange
orientation: #vertical
type: #bar

needleDirection: nil!

5,108,770
279 280

valuetBarGauge

~BarGaugeView
on: self
aspect: #valueéb
change: #valueéb:
range: self valuebRange
orientation: #vertical
type: #bar

needleDirection: nil!

value7BarGauge
~“BarGaugeView
on: self

aspect: #value?

change: #value7:

range: self value7Range
orientation: #vertical
type: #bar

needleDirection: nil! !
15LCGaugedPatch methodsFor: 'GaugeSet building'!

gaugeSetl

| gaugeSet |

gaugeSet _ View new model: self.

gaugeSet borderWidth: 1.

gaugeSet
addSubView: (LabelView label: ((self variables at:1) name))
in: (0 @ 0 extent: (1) & (1 / 4))
borderwidth: 1.

gaugeSet
addSubView: self valuelDigitGauge
in: (0 €@ (1/4) extent: (1) @ (1/4))
borderWidth: 1.

gaugeSet
addSubView: self valuelBarGauge

5,108,770

281 282

in: (0 @ (1/2) extent: (1) € (1/2))
borderWwidth: 1.

~gaugeSet!

gaugeSet?2

| gaugeSet |

gaugeSet _ View new model: self.
) gaugeSet borderWidth: 1.

gaugeSet
addSubView:
in: (0 @ 0 extent: (1) @ (1 / 4))

(LabelvView label: ((self variables at:2) name))

borderWidth: 1.

gaugeSet
addSubView: self value2DigitGauge

in: (0 @ (1/4) extent: (1) @ (1/4))

borderWidth: 1.

gaugeSet
addSubView: self value2BarGauge
in: (0 @ (1/2) extent: (1) @ (1/2})

borderWidth: 1.

~gaugeSet!

gaugeSet3

| gaugeSet | 7
((self variables at:3) units) = ‘ratio' ifTrue: [~ self

ratioGauge3].
gaugeSet _ View new model: self.

" gaugeSet borderWidth: 1.

gaugeSet
addSubView: (LabelView label: {((self variables at:3) name))

in: (0 @ 0 extent: (1) @ (1 / 4))

borderWidth: 1.

gaugeSet
addSubvView: seélf value3DigitGauge

5,108,770
283 284
in: (0 @ (1/4) extent: (1) @ (1/4))

borderwidth: 1.

gaugeSet
addSubView: self value3BarGauge
- in: (0 @ (1/2) extent: (1) @ (1/2))
borderwidth: 1.

“gaugeSet!

gaugeSet4
| gaugeSet |
{(self variables at:4) units) = 'ratio' ifTrue:[” self
ratioGauge4d).
gaugeSet _ View new model: self.
gaugeSet borderWidth: 1.
gaugeSet
addSubView: (LabelView label: ((self variables at:4) name))
in: (0 @ 0 extent: (1) €@ (1 / 4))
beorderWidth: 1.

gaugeSet
addSubView: ‘self value4DigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderWidth: 1.

gaugeSet
addSubView: self valued4BarGauge
in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: 1;

‘gaugeset!

gaugeSet5
| gaugeSet |
gaugeSet _ View new model: self.
gaugeSet borderWidth: 1.
gaugeSet
addSubView: (LabelView label: ((self variables at:5) name))

5,108,770
285 286

in: (0 @ 0 extent: (1) € (1 / 4))
borderWidth: 1.

gaugeSet
addSubView: self valueS5DigitGauge

in: (0 @ (1/4) extent: (1) € (1/4))

borderWidth: 1.

gaugeSet
addSubView: self valueSBarGauge

in: (0 @ (1/2) extent: (1) @ (1/2))
borderWidth: 1.

~gaugeSet!

gaugeSet6
| gaugeSet |
gaugeSet _ View new model: self.
gaugeSet borderWidth: 1.

gaugeSet
addSubView:
in: (0 @ 0 extent: (1) € (1 / 4))

(LabelvView label: ((self variables at:6) name))

borderwidth: 1.

gaugeSet
addSubView: self valuefDigitGauge

in: (0 @ (1/4) extent: (1) € (1/4))

borderwWidth: 1.

gaugeSet
addSubView: self value6BarGauge

in: (0 @ (1/2) extent: (1) @ {(1/2))
borderWidth: 1.
~gaugeSet!

gaugeSet7
| gaugeSet |

gaugeSet _ View new model: self.

gaugeSet borderWidth: 1.

5,108,770
287 | 288
gaugeSet

addSubView: (LabelvView label: ((self variables at:7) name))
in: (0 @ 0 extent: (1) @ (1 / 4))
borderwidth: 1.

gaugeSet
| addSubView: self valué7DigitGauge
in: (0 @ (1/4) extent: (1) @ (1/4))
borderwidth: 1.

gaugeSet
addsubView: self value7BarGauge
in: (0 @ (1/2) extent: (1) € (1/2))
borderWidth: 1.

~gaugeSet! !
! SLCGaugedPatch methodsFor: ‘updating'!

refigureThings
"This is the response to the update: #color message."™
"Recompute the triplet with the new ivValues."
"Update the palette with that triplet."
"Updating the cost using the new numbers is take care of with
update: #cost."

"I am using direct instance variable access here for speed."

| codedvalues |

codedValues _ OrderedCollection new.

1 to: self variables size do: [:n | codedValues add: (regression
convertValue: (ivValues at: n)

of: n)}.

triplet valuel: (regression calculateValue: 1 using: codedValues).
triplet value2: (regression calculateValue: 2 using: codedvValues).
triplet value3: (regression calculateValue: 3 using: codedvélues).
gunTriplet _ calibration computeGunsFrom: triplet.
device

setColorMapEntry: 3

toRedValue: gunTriplet valuel

-5,108,770
289 290

greenValue: gunTriplet value?2

blueValue: gunTriplet value3.!

update: aSymbol
self halt.
aSymbol = #cost
ifTrue: [cost _ cost + 1]
[aSymbol = #color ifTrue:

1

ifFalse: [self refigureThings}]! !

! SLCGaugedPatch methodsFor: '‘ratio gauge stuff'!

ratioGauge3
| gaugeSet |
gaugeSet _ View new model: self.

gaugeSet borderWidth: 1.

gaugeSet
addSubView: (LabelView label:'percent')

in: (0 @ 0 extent: (1) @ (1 / 8))
borderwidth: 1.

gaugeSet
addSubView: (LabelView label: ((self variables at:3) name))
in: (0 @(1/8) extent: (1) @ (1 / 8))

bordexwWidth: 1.

"DIGIT GAUGES"

gaugeSet
addSubvView: self value3ADigitGauge

in: (0 @ (1/4) extent: {1/2) R (1/8))

borderWwidth: 1.

gaugeSet

i . addSubview: self value3BDigitGauge
in: ((1/2) @ (1/4) extent: (1/2) @ (1/8))

borderWidth: 1.

"BAR GAUGES™

gaugeSet
addSubView: self value3ABarGauge

5,108,770
292

7 291
in: (0 @ (3/8) extent: (1/2) @ (5/8))

borderWwidth: 1.

gaugeSet
addSubView: self value3BBarGauge

in: ((1/2) @ (3/8) extent: (1/2) @ (5/8))
borderWwidth: 1.

~gaugeSet!

ratioGauge4
| gaugeSet |
gaugeSet _ View new model: self.

gaugeSet borderWidth: 1.

gaugeSet
addSubView: (LabelView label:'percént')

in: (0 @ 0 extent: (1) @ (1 / 8))
borderWidth: 1.

gaugeSet
addSubView: (LabelView label: ({self variables at:4) name))
in: (0 @(1/8) extent: (1) € (1 / 8))

borderWidth: 1.

"DIGIT GAUGES"

gaugeSet
addSubView: self valuedADigitGauge
in: (0 @ (1/4) extent: (1/2) @ (1/8))
borderWidth: 1.

gaugeSet _
addSubView: self valued4BDigitGauge

in: ((1/2) @ (1/4) extent: (1/2) @ (1/8))

borderwidth: 1.

"BAR GARUGES"
gaugeSet
addSubView: self value4ABarGauge
in: (0 @ (3/8) extent: (1/2) @ (5/8))
borderWidth: 1.

293
gaugeSet

5,108,770

addSubView: self value4BBérGauge
in: ((1/2) @ (3/8) extent: (1/2) @ (5/8))

borderWidth: 1.

~gaugeSet!
value3Aa
I r|
r _ self ivvalues at:

Az * 100)/(1 + 1)) !

value3A: aNumber
aNumber = 100

3.

"The ratio"

294

ifTrue: [self ivValues at: 3 put: 999989]

ifFalse: [self ivValues at: 3 put:

aNumber) asFloat)].

self changed: #value3a.
self changed: #value3B.

self refigureThings!

self

aspect: #value3A

change: #value3a:

orientation: #vertical

#bar

(0 to: 100)

needleDirection: nil!

value3ABarGauge
~“BarGaugeView
on:
range:
type:
value3ADigitGauge
~DigitGaugeView
on: self

aspect: #value3a

change: #value3A:

range: (b to: 100)!

value3B

f ¢ |

(aNumber /

(100 -

5,108,770
295 296

r _ self ivValues at: 3. "The ratio"

~((100) /(1 + x))!

value3B: aNumber
(aNumber = 0)ifFalse:[self ivValues at: 3 put: (((100-
aNumber) /aNumber) asFloat)] ‘
ifTrue: [self ivValues at: 3 put: 999999].
self changed: #value3A.
self changed: #value3B.

self refigureThings.!

value3BBarGauge
~BarGaugeView
on: self
aspect: #value3B
change: #value3B:
range: (0 to: 100)
) orientation: #vertical
type: #bar
) needleDirection: nil!
value3BDigitGauge
~DigitGaugeView
on: self

aspect: #value3B
change: #value3B:

range: (0 to: 100)!

valuedA
[

. r _ self ivValues at: 4. "The ratio"

“((r * 100)/(1 + x))!

value4A: aNumber
aNumber = 100
ifTrue: [self ivValues at: 4 put: 999999] _
ifFalse: {self ivValues at: 4 put: (aNumber / (100 -
aNumber) asFloat)].
self changed: #value4A.

5,108,770

297 298
self changed: #valuedB,

self refigureThings!

value42ABarGauge

~BarGaugeView
on: self
aspect: #valueda
change: #vélue4A:
range: (0 to: 100)
orientation: #vertical
type: #bar
needleDirection: nil!

Yalue4ADigitGauge

. ~DigitGaugeView

. on: self

aspect: #valued:r
change: #value4A:

range: (0 to: 100)!

valuedB
| ¢ |
r _ self ivValues at: 4. “The ratio"

~((100) /(1 +)!

value4B: aNumber

(aNumber = 0)ifFalse: [self ivValues at: 4 put: (((100-
aNumber) /aNumber) asFloat)]

ifTrue: [self ivvalues at: 4 put: 999889).

self changed: #valuedA.

self changed: #value4B.

self refigureThings.!

value4BBarGauge
“BarGaugeView
on: self
aspect: #value4B

change: #valuedB:

5,108,770

299 300
range: (0 to: 100)

orientation: #vertical
type: #bar

needleDirection: nil!

value4BDigitGauge
‘~DigitGaugeView
on: self
aspect: #value4B
change: #value4B:

range: (0 to: 100)! !
!SLCGaugedPatch methodsFor: 'building'!

buildAndAssembleBrowser

"I'll return a StandardSystem view. I'm called by openOn: in this

class"

"I have an experiment already."

"INSTANCE VARIABLE SETUP"

"I need to set the ivValues to their center values"

| gaugePanel patchPanel 1bl topView exp ivs theTriplet
surroundTriplet | .

exp _ self experiment trajectory.

self ivValues: OrderedCollection new.

ivs _ self ivVvalues.

1 to: exp variableDefinitions size do: [:n | ivs add: (exp
variableDefinitions at: n) center].

"I need to calculate the colorTriplet corresponding to those
ivvalues" ' .

triplet _ SLLabHunterColor new.

self refigureThings. "This is what ‘update:#color' invokes"

"I need to calculate the cost associated with that recipe"

cost _ 100.

"ece VIEW BUILDING ---"

"GAUGE PANEL"

gaugePanel _ ‘'self buildGaugePanel.

5,108,770
: 302

301
“"PATCH PANEL"
patchPanel ; self buildPatchPanelWith: triplet.
"I need to sét up the costPanel"
"I need to set up the descriptionPanel.with the text description
of the
experiment"
"TOP VIEW CREATION"
. 1bl _ self experiment trajectory name, ' 3:4°'.,
topView _ StandardSystemView '
model: self
label: 1bl
minimumSize: 250 € 70.
topView‘cacheRefresh: false.
topView borderwWidth: 1.
"TOPVIEW ASSEMBLY"
topView
addSubView: gaugePanel
in: (0 @ 0 extent: 1 @ (1 / 2))
borderWidth: 1.
topView
addSubView: patchPanel

in: (0 @ (1 / 2) extent: 1 @ (1 / 2))
borderWidthﬁ 1.
"I will return the topView"

~topView!

buildGaugePanel
"This returns a GaugePanel ready for insertion into the topView."

"Figure out how many gauges"

| ent fraction panel | _

ent _ self experimen; trajectory variableDefinitions size,

cnt > 7 ifTrue: [selfAerror: 'I can only handle a maximum of 7
variables!!"*].

"Calculate how wide each one is"

fraction _ 1 / ent.

cnt =

panel

cnt =

panel

cnt =

panel

5,108,770

303
"Create the panel"
panel _ View new model: self.

panel insideColor: Form white.

‘panel

addSubView: self gaugeSetl
in: (0 @ 0 extent: 1 / cnt
borderwidth: 1.

‘ent = 1 ifTrue: [“panel].

panel
addSubvView: self gaugeSet2
in: ((l1/cnt) @ 0 extent: 1
borderWidth: 1.

cnt = 2 ifTrue: [“panell.

panel -
addSubView: self gaugeSet3
in: ((2/cnt) @ 0 extent: 1
borderWidth: 1.

cnt = 3 ifTrue: [“panel].

panel

addSubView: self gaugeSetd4

in: ((3/cnt) @ 0 extent: 1 / cnt
borderwidth: 1.

4 ifTrue: [“panel].

addsSubView: self gaugeSet$
in: ((4/cnt) @ 0 extent: 1 / ent
borderWidth: 1.

5 ifTrue: [“panel].

addSubView: self gaugeSet6
in: ((5/cnt) @ 0 extent: 1 / ent
borderwidth: 1.

6 ifTrue: [“panel].

addSubView: self gaugeSet?7
in: ((6/cnt) @ 0 extent: 1 / cnt
borderWidth: 1.

1

ent @ 1)

cnt @ 1)

1)

1)

1)

1)

304

5,108,770

305 306

~panel!

buildPatchPanelWith: aTriplet

"here we build 2 views, one imbedded in the other, to display the

color"
"This one defaults to a single patch in the center of the surround
on index 3

for the regressed color."

| patchPanel theTriplet thePatch tripletCoTwo ind |

patchPanel _ View new.

thePatch _ ColorFormView new.

ind _ SLCMapIndex new. ind index: 3.

thePatch model: ind.

patchPanel
addSubView: thePatch) 2 N
in: (0.2 @ 0.2 extent: 0.6 @ 0.6)
borderWidth: 1.

~patchPanel! .

buildPatchPanelWith: aTriplet andSurround: surroundTriplet

"here we build 2 views, one imbedded in the other, to display the

color"™
"ITndex 4 is used for the surround"

"This one defaults to a single patch in the center of the surround

on index 3

for the regressed color."

| patchPanel theTriplet thePatch tripletCoTwo |
patchPanel _ SLCColoredBoxesView new.
patchPanel model: self.

theTriplet _ OrderedCollection new.

theTriplet add: surroundTriplet.

patchPanel
buildAndassembleForInsertionUsing: theTriplet

IndexBase: 4

rows: 1

5,108,770
307

columns: 1.
thePatch _ SLCColoredBoxesView new.
thePatch model: self.
tripletCoTwo _ OrderedCollection new.
tripletCoTwo add: aTriplet.'
thePatch

buildAndAssembleForInsertionUsing:

IndexBase: 3
rows: 1
columns: 1.
patchPanel
addSubView: thePatch
in: (0.2 @ 0.2 extent: 0.6 @ 0.6)
borderWidth: 1.

~patchPanel! !

1S1LCGaugedPatch methodsFor: 'accessing'!

calibration

"return the value of calibration.

308

tripletCoTwo

For a description of this instance variable, see the comment

in the accessing method 'calibration:;'.”

~calibration!

calibration: aParameter

"set the value of calibration.

aParameter is expected to be of the class aClass.

This instance variable is used to (explanation>."

calibration aParameter!

cost

“return the value of cost.

For a description of this instance variable, see the comment

in the accessing method ‘cost:'."

2cost!

5,108,770
309 310

cost: aParameter
“set the value of cost.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanatioh>."
cost _ aParameter!

device
"return the value of device.
For a description of this instance variable, see the

in the accessing method 'device:'."
~device!

device: aParameter
"set the value of device.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
device _ aParameter!

experiment
"return the value of experiment.
For a description of this instance variable, see the

in the accessing method 'experiment:'."“
~experiment!

experiment: aParameter
"set the value of experiment.
aParameter is expected to be of the class aClass. .

This instance variable is used to <explanation>.®
experiment _ aParameter!

ivvalues
"return the value of ivValues.
For a description of this instance variable, see the

in the accessing method 'ivValues:'.™

comment

comeﬁt

comment

5,108,770
311 312

~ivValues!

ivValues: aParameter
"set the value of ivvalues.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

ivvalues _ aParametex!

regression
"return the value of regression.
For a description of this instance variable, see the

in the accessing method 'regression:'."
“regression!

regression: aParameter
"set the value of regression.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>.™"
regression _ aParameter!
triplet
"return the value of triplet.
For a description of this instance variable, see the
in the accessing method ‘'triplet:*'.™
Striplet!
tfiplet: aParameter
"set the value of triplet.
aParameter is expected to be of the class aClass.
This instance variable is used to <explanation>.™

triplet _ aParameter!

variables

comment

comment

: 5,108,770
313 314

~self experiment trajectory variableDefinitions! !

1SLCGaugedPatch methodsFor: 'releasing'!

release

experiment release.

ivValues do:[:each | ivValues at: each release].
ivvalues _ nil.

triplet _ nil.

cost _ nil.

calibration _ nil.

device _ nil.

gunTriplet _ nil.

regression _ nil.

super release.! !

N s mr e e e e e o e - we = wem mem e e we T}

SLCGaugedPatch class

instanceVariableNames: ''!

!S1lCGaugedPatch class methodsFor: 'instance creation'!

'ppenOn: anExperiment

"SLCGaugedPatch openOn: (SLCExperiment fromUserExcelTextFile:

'Paul''s Reality:EP120.ex.txt')"

| gaugedPatch |

“"create and schedule a new instance of me on anExperiment with

center values for each of the independent variables.™
gaugedPatch _ self new.
QSet my experiment."
gaugedPatch experiment: anExperiment.
gaugedPatch calibration: SLCColorCalibration new.

gaugedPatch device: ColorDevice new,

gaugedPatch regression: (SLCSimpleRegressicon on: anExperiment).

"buildAndAssembleBrowser returns a StandardSystemView all set up."

gaugedPatch buildAndAssembleBrowser controller open! !

Ny

5,108,770
315 316

SLColorTripletBrowser subclass: #SLCTripletPatchBrowser
instanceVariableNames: ‘'red green blue patchIndex surroundIndex
surroundGray calibration '
classVariableNames: '
poolDictionaries: '!
category: 'Color Science Tools'!
SLCTripletPatchBrowser comment:
‘red, grren and blue are the gun values for the patch <0..maxGunValue of
the ColorDevice>
patchIndex is the CLUT index used for the patch <0..maxMapIndex>
surroundGray is the level of the gray surround <0..100>

surroundIndex is where the gray is stored in the CLUT <0..maxMapIndex>'!

!SLCTripletPatchBrowser methodsFor: 'scheduling'!

buildAndAssembleBrowser
| topView patch labelHeight gaugeHeight patchHeight cd gray
surround |

"build the subviews and arrange them in a SSV for scheduling"

topview _ StandardSystemView
model: self
label: ‘Triplet Patch Browser'
minimumSize: 250 @ 70.
topView cacheRefresh: false.
topView borderwidth: 1.
labelHeight _ 1/7.
' gaugeHeight _ 1/3-labelHeight.
patchHeight _ 1-(labelHeight+gaugeHeight).
"Left gauge -- 080 extent 1/3 @ labelHeight + gaugeHeight"
topView)
 addSubView:

(LabelView label: (colorTriplet colorSpacelabels at: 1))

in: (0 @ 0 extent: (1 / 3) @ (labelHeight))
borderWidth: 1.

5,108,770
317 318

topView
addSubView: self valuelDigitGauge A
in: (0 @ (labelHeight) extent: (5 / 21) @ (gaugeHeight))
borderWidth: 1.

topView
addSubView: self valuelBarGauge
in: ((5/21) @ (labelHeight) extent: (2 / 21) @
{gaugeHeight))
borderWidth: 1.

"Center gauge -- 1/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 2))
in: ((1/3) @ 0 extent: (1 / 3) @ (labelHeight))
borderWidth: 1. -

topView
addSubView: self value2DigitGauge
in: ((1/3) @ (labelHeight) extent: (5 / 21) @ (gaugeHeight))
borderWidth: 1.

topView
addSubView: self value2BarGauge
in: ((12/21) @ (labelHeight) extent: (2 / 21) @
(gaugeHeight))
borderWidth: 1.

"Right gauge -~ 2/3 @ 0 extent 1/3 @ gaugeHeight™
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 3))
in: ((2/3) @ 0 extent: (1 / 3) @ (labelHeight))
borderWidth: 1.

5,108,770

319 320
topView

addSubView: self value3DigitGauge
in: ((2/3) @ (labelHeight) extent: (5 / 21) @ (gaugeHeight))
borderwidth: 1.

topvView
addSubView: self value3BarGauge
in: ((19/21) @ (1abelHeight) extent: (2/21) @ (gaugeHeight))
borderWidth: 1. '
"The colorPatch”
surround _ SLCColoredRectangle new.
surround ﬁapIndex: S.
cd _ ColorDevice new.
gray _ (cd maxGunValue).
cd setColorMapEntry: 5 toRedValue: gray greenvélug: gray
bluevValue: gray.

- patch _ SLCColoredRectangle new.
patch mapIndex: 6.
cd _ ColorDevice new.
gray _ (cd maxGunValue) // 2.

cd setColorMapEntry: 6 toRedValue: gray greenValue: 0 blueValue:

surround addSubView: patch
in: ((1/4)@(1/4) extent: (1/2)6(1/2))
borderWidth: 1.

topView .

addSubView: surround .
in: ((0) @ (gaugeHeight + labelHeight) extent: (1) @

(patchHeight))
borderWwidth: 1.

“topView!

buildAndAssembleNewBrowser

| topView patch labelHeight gaugeHeight patchHeight cd gray
surround labelWidth |

5,108,770
321 322

"build the subviews and arrange them in a SSV for scheduling"

topView _ StandardSystemView
model: self
label: ‘Triplet Patch Browser 5:6°
_ minimumSize: 250 @ 70.
topView cacheRefresh: false.
topView borderWidth: 1.
labeiHeight _ 1/20.
labelWidth _ 1/10.
gaugeHeight _ 1-(2*labelHeight).
patchHeight _ 1. '
*Left gauge -- 080 extent 1/3 @ labelHeight + gaugeHeight"
. topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 1))
in: (0 @ 0 extent: (labelWidth) @ (labelHeight})
borderWidth: 1.

topView
addSubView: self valuelDigitGauge

in: (0 @ (labelHeight) extent: (labelWidth) @ (labelﬁeight))
borderWidth: 1.

topView

addSubView: self valuelBarGauge

in: (0 @ (2*labelHeight) extent: (labelWidth) @
{(gaugeHeight))
borderWidth: 1.

"Center gauge -- 1/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colozSpaceLabelshat: 2))
in: ((labelWidth) @ 0 extent: (labelWidth) @ (labelHeight))
borderWidth: 1.

5,108,770

323 324

topView
addSubView: self value2DigitGauge

in: ((labelwidth) @ (labelHeight) extent:
(labelHeight))

(labelWidth) @

borderwidth: 1.

topView
addSubView: self value2BarGauge

in: ((labelWidth) @ (2*labelHeight) extent:‘(labelWidth) d
{(gaugeHeight)) ’

. borderWidth: 1.

"Right gauge -- 2/3 @ 0 extent 1/3 @ gaugeHeight™
topView -

addSubvView:

(LabelView label: (colorTriplet colorSpacelabels at: 3))

" in: ((2*labelWidth) @ 0 extent: (labelWidth) @
(labelHeight))

borderWidth: 1.

topView

-

~ addSubView:. self value3DigitGauge

Y

in: ((2*labelwWidth) @ (labelHeight) extent: (labelWidth) ¢
(labelHeight))

borderwidth: 1.

topView
addSubView: self value3BarGauge

in: ((2*labelwWidth) @ (2*labelHeight) extent:

{labelwidth) @
(gaugeHeight))

borderwidth: 1.
"The colorPatch"

surround _ View new.

patch _ SLCColoredRectangle new.
patch mapIndex: 6.

cd _ ColorDevice new.

~ 5,108,770
325 326

gray _ (cd maxGunValue) // 2.
cd setColorMapEntry: 6 toRedValue: 0 greenvalue: 0 blueValue: 0.

surround addSubView: patch
in: ((1/4)@(1/4) extent: (1/2)@(1/2))
borderwWidth: 1.

topView
addSubView: surround
in: ((3 * labelWidth) € 0 éxtent: (1-(3*labelwidth)) € 1)
borderWidth: 1.

~topView!

buildAndAssembleNewBrowserForInsertion
| topView patch labelHeight gaugeHeight patchHeight cd gray
surround labelWidth aView |

"build the subviews and arrange them in a SSV for scheduling"

aview _ View new model: self.
topView cacheRefresh: faise.
topView borderWidth: 1.
labelHeight _ 1/20.

labelwidth _ 1/10.

gaugeHeight _ 1-(2*labelHeight).

patchHeight _ 1.

"Left gauge -- 0G0 extent 1/3 @ labelHeight + gaugeHeight"

topView

addSubView:
(LabelvView label: (colorTriplet colorSpacelabels at: 1))
in: (0 @ 0 extent: (labelwidth) @ (labelHeight))
borderWidth: 1.

topView
addSubView: self valuelDigitGauge
in: (0 @ (labelHeight) extent: (labelWidth) @ (labelHeight))
borderWidth: 1.

5,108,770
327 328

topView
addSubView: self valuelBarGauge
in: (0 @ (2*labelHeight) extent: (labelWidth) @
(gaugeHeight)) ’
borderWidth: 1.

"Center gauge -- 1/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 2))
in: ((labelWidth) @ 0 extent: (labelWidth) @ (labelHeight))
borderwWidth: 1.

topView
addSubView: self value2DigitGauge
in: ((labelwidth) @ (labelHeight) extent: (labelWidth) @
(labelHeight))
borderWidth: 1, .

_ topView
addSubView: self value2BarGauge
in: ((labelwWidth) @ (2*labelHeight) extent: (labelWidth) @
{gaugeBeight))
borderWidth: 1.

"Right gauge -- 2/3 @ 0 extent 1/3 @ gaugeHeight"
topView
addSubView:
(LabelView label: (colorTriplet colorSpacelabels at: 3))
in: ((2*labelwidth) @ 0 extent: (labelWidth) @
(labelHeight))
borderWidth: 1.

topView
addSubView: self value3DigitGauge
in: ((2*labelWidth) @ (labelHeight) extent: (labelWidth) @
(labelHeight))

5,108,770

329 | 330

borderWidth: 1.

topView
addSubView: self value3BarGauge

(gaugeﬂeight))

N borderWidth: 1.

"The colorPatch" -
surround _ SLCColoredRectangle new.
surround mapIndex: 5.
cd _ ColorDevice new.

gray _ (cd maxGunValue).

cd setColorMapEntry: 5 toRedValue: gray greenValue:

blueValue: gray.

patch _ SLCColoredRectangle new.
patch mapIndex: 6.

" cd _ ColorDevice new.

gray _ (cd maxGunValue) // 2.

cd setColorMapEntry: € toRedVdlue: gray greenValue:

surround addSubView: patch
in: ({1/4)Q@(1/4) extent: (1/2)6(1/2))
borderWidth: 1.

topView

addSubvView: surround

in: ((2*labelWidth) @ (2*labelHeight) extent:

(labelWidth)

gray

0 bluevalue:

in: ((3 * labelWidth) @ O extent: (1-(3*labelWidth)) @ 1)

borderWidth: 1.

~“topView! !

!SLCTripletPatchBrowser methodsFor: 'private'!

badComputeGunValues

| max caplL a b capX capY¥ capZ k redNormalize greenNormalize

blueNormalize offset |

€

5,108,770
331 332

"bogus for Lab kindof"

max _ (ColorDevice new) maxGunValue.

capl __ self colorTriplet valuel.

a _ self colorTriplet value2.

b~_ self colorTriplet value3.

wcalculate X,Y,2 (see Gardner manual)"

capX _ (caplL / 100) * ((0.5602 * a) + (0.9804 * capl)).
capY _ (capl * caplL)/100.

capz _ (caplL / 58.27)*((0.7 * caplL) -~ b).

“Now, calculate red, green and blue gun values"

"k and the normalization factors are bogus here"

"the coeefficients are based on actual SuperMac Color monitor display
phosphor chromaticities.®

"see Cowan SIGGRAPH '84, p 48" -

offset _ 170.0.

k _ .145.0.

redNormalize _ greenﬁormalize _ blueNormalize _ 1.

red _ ((k/redNormalize) * (offset + (2.167 * capX) - (0.937 * capY) -
(0.344 * capz)))//1.

green _ ((k/greenNormalize) * (offset + (-1.264 * capX) + (2.225 * capY)
+ (0.066 * capz)))//1.

blue _ ((k/blueNormalize)* (offset + (0.097 * capX) - (0.288 * capy¥) +
(1.278 * capz)))//1.

patchlndex _ 6!

changePatchGuns

I ed |
cd _ ColorDevice new.

cd

~ setColorMapEntry: patchIndex
toRedValue: red
greenValue: green

blueValue: blue!

changeSﬁrroundGuns

5,108,770
333 ' 334

"compute Gun level from surroundGray value which is a percentage"

| cd gray |
cd _ ColorDevice new.
gray _ cd maxGunValue * (surroundGray / 100).
cd
setColorMapEntry: surroundIndex
toRedvValue: gray
greenValue: gray

bluevalue: gray!

recomputeBogusGunValues : 2 .
| max 1 |

"bogus for Lab kindof™
max _ (ColorDevice new) maxGunValue.

red _ ((0.5 + ((self colorTriplet value2) /122)) * max)//1.
blue _ ((0.5 - ((self colorTriplet value3)/122)) * max)//1.
green_(((self colorTriplet valuel)/100) * max)//1.
patchIndex _ 6.! .

recdmputeGunValues
| rgbTriplet |
rgbTriplet _ calibration computeGunsFrom: self colorTriplet.
(rgbTriplet isNil)ifFalse:[red _ rgbTriplet redGun.
green _ rgbTriplet greenGun.
blue _ rgbTriplet blueGun]ifTrue:[red green blue_0].
patchIndex _ 6! !

!S1CTripletPatchBrowser methodsFor: 'indirect accessing'!

valuel: aNumber
“set valuel in my colorTriplet™

“This is sent when the gauge is jerked around"

self colorTriplet valuel: ((aNumber * 100) truncated / 100) asFloat.
.MHere I change the CLUT. I calculate the gun values now associated with
the colorSystem and write them to the CLUT at patchIndex."

séif recomputeGunValues.

self changePatchGuns.!

5,108,770

aNumber 335

valueZ2:
"set valuel in my colorTriplet"
"This is sent when the gauge is
self colorTriplet value2: ((aNumber *
"Here I change the CLUT. I calculate
the colorSystem and write them to the
self recomputeGunValues.

self changePatchGuns.!
value3: aNumber

"set valuel in my colorTriplet™

“This is sent when the gauge is
self colorTriplet value3: ((aNumber *
"Here I change the CLUT. I calculate
the colorSystem and write them to the
self recomputeGunValues.

self changePatchGuns! !
!SLCTripletPatchBrowser methodsFor:

blue

"return the value of blue.

For a description of this instance variable, see the

in the accessing method 'blue:'.

“blue!
blue: aParameter
"set the value of blue.

aParameter is éxpected to be of

336

jerked around"

100) truncated / 100) asFloat.
the gun values now associated with

.

CLUT at patchIndex."

jerked around"

100) truncated / 100) asFloat.
the gun values now associated with

CLUT at patchIndex.™

'accessing'!

comment

"

the class aClass.

This instance variable is used to <explanation>."

blue _ aParameter!

calibration

~calibration!

calibration: aColorCalibration

5,108,770
337 338

calibration _ aColorCalibration!

green

wreturn the value of green.
For a description of this instance variable, see the comment

in the accessing method ‘'green:'."
~green!

green: aParameter
"set the value of green.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
green __ aParameter!

patchlndex
"return the value of patchlndex.
For a description of this instance variable, see the comment

in the accéssing method 'patchIndex:'."™
~patchlIndex!

patchIndex: aParameter
"set the value of patchIndex.
R aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

patchIndex _ aParameter!

red
“return the value of red.
For a description of this instance variable, see the comment
in the accessing method ‘red:'."

~red!

red: aParameter

"set the value of red.

5,108,770
339 340

aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
red _ aParameter!

surroundGray
"return the value of surroundGray.
For a description of this instance variable, see the comment

in the accessing method ‘surroundGray:'."
~surroundGray!

surroundGray: aParameter
"set the value of surroundGray.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
surroundGray _ aParameter!

surroundIndex
“"return the value of surroundIndex.
For a description of this instance variable, see the comment

in the accessing method 'surroundIndex:'."
~surroundIndex!

surroundIndex: aParameter
"set the value of surroundIndex.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
surroundIndex _ aParameter! !

1SLCTripletPatchBrowser methodsFor: 'releasing'!"
release

red _ nil.

green _ nil.

blue _ nil.
patchIndex _ nil.

surroundIndex _ nil.

5,108,770
341 342

surroundGray _ nil.
calibration _ nil.

super release!

removeDependent: anCbject
"this message is intercepted to help break some other dependencies
when an

instance of me is scheduled alone"

self release.

super removeDependent: anObject! !

Noe v v wwen @mow mem Grer v et @ e Geer me evas weem e mmem maee O]

SLCTripletPatchBrowser class

instanceVariableNames: ''!

!SLCTripletPatchBrowser class methodsFor: ‘instance creation'!

newOn: anSlLColorTriplet
l ctb |

“create and return a new instance of me on anSLColorTriplet”

ctb _ self new.
ctb colorTriplet: anSLColorTriplet.
ctb calibration: SLCColorCalibration new.

~cth!

on: anSlLColorTriplet
{ ctb |

"create and return a new instance of me on anSLColorTriplet"

ctb _ self new.
ctb colorTriplet: anSLColorTriplet.
ctb calibration: SLCColorCalibration new.

“ctb!

openNewOn: anSLColorTriplet

"create and schedule a new instance of me on anSLColorTriplet"

5,108,770
343 34

"SLCTripletPatchBrowser openNewOn: (SLLabHunterColor new)."
"SLCTripletPatchBrowser openNewOn: (SLYxyColor new)."
"SLCTripletPatchBrowser openNewOn: (SLRGBGunsColor new) . "
"SLCTripletPatchBrowser openNewOn: (SLXY2Color new)."

| etb |

ctb _ self newOn: anSLColorTriplet.

ctb buildAndAssembleNewBrowser controller open!

openOn: anSLColorTriplet

"create and schedule a new instance of me on anSLColorTripiet"
"SLCTripletPatchBrowser openOn: (SlLabHunterColor new)."
“"SLCTripletPatchBrowser openOn: (SLYxyColor new)."
"SLQ?ripletPatchBrowser openOn: (SLRGBGunsColor new)."
"SLCTripletPatchBrowser openOn: (SLXYZColor new)."

| etb |

ctb _ self on: anSLColorTriplet.

ctb buildAndAssembleBrowser controller open! !

SLObject subclass: #SLCThreeByThreeBrowser

instanceVariableNames: 'experiment ivValues gridvalues xIndex

yIndex gridTriplets '

classVariableNames: ''
L]

poolDictionaries: !

category: 'Color Science Tools'!

!SLCThreeByThreeBrowser methodsFor: ‘color calculating'!

calculatevValue: aNumber using: dataValues

"aNumber is the regression egquation to use related to a color

triplet value.

datavValues is expected to be an OrderedCollection of numbers."

"start with intercept. calculate linear terms. calculate 2nd order

terms."

| coefs temp |

coefs _ self experiment coefficientsFor: aNumber.
"this returns an OrderedCollection"

"The zeroth order term"

5,108,770
345 346

temp _ coefs at: 1.
“"The linear terms"
1 to: self variableCount do: [:n | temp _ temp 4+ ((coefs at: n +
1)
* (dataValues at: n))}.
"The pure second order terms" | _
1 to: self variableCount do: [:n | temp _ temp + ((coefs at: self
variableCount + n + 1)
* (dataValues at: n) * (dataValues
at: n))l.’
"The mixed terms"
1 to: (self variazbleCount - 1) do: {:n | (n+l) to: self

variableCount do: [:m]
“"What coefficient index do I use?"

temp _ temp + ({(coefs at: (self experiment coefficientlIndexFor: n by:
™))

* (dataValues at: n) * (dataValues
at: m))Jl.

~ temp!

convertValue: aValue of: anlIndex
"This is generalized conversion routine that will use the
appropriate formula for

the type of conversion regquired."“

| v temp |
avValue isNil ifTrue: [“nil].
anIndex > self variableCount
ifTrue:
[self exrror: 'That variable doesn not exist to
CONVERT! !,
“nil}.
v _ self experiment trajectory variableDefinitions at: anlIndex.
v units = 'ratio’
ifTrue:
[temp _ self ratioConvertValue: aValue of: anindex.
“temp].
temp _ self normalizeValue: aValue of: anIndex.

~temp!

5,108,770
347 348

normalizeValue: aValue of: anlIndex
“This routine normalizes an input value using the center and range
values for the

independent variable at index anIndex. Returns nil for bad input.®

| v val calc |
anIndex > self variableCount

ifTrue:]
[self error: 'That variable doesn not exist to

NORMALIZE!!'.
‘nil]}

v _ self experiment trajectory variableDefinitions at: anIndex.
"v is an ExtendedvVariableDefinition now."
val _ aValue.
val < v min

ifTrue: [val _ v min]

ifFalse: [val > v max ifTrue: [val _ v max]].
calc _ val -~ v center / v range.

~calc!

ratioConvertValue: aValue of: anIndex
"This routine normalizes an input value using the center and range
values for the

independent variable at index anIndex. Returns nil for bad input.

This is slightly different than a straight normalize. It is used
to convert an input ratio to

a coded (~1,0,1) value used for regressed value éﬁlculation."

. | v val calc inv |
anIndex > self variableCount
ifTrue:
(self error: °'That variable does not exist to RATIO
CONVERT!!',
~nil].
v _ self experiment trajectory variableDefinitions at: anIndex.
"v is an ExtendedVariableDefinition now."
val _ aValue.

val < v min

5,108,770
349 350

ifTrue: [val _ v min)
ifFalse: [val > v max ifTrue: [val v max]].
val = 0 ifTrue: [inv _ 999999999)ifFalse: [inv 1/val].

cale _ ((1/(1+inv) - v center) / v range).
~calc! !

!SLCThreeByThreeBrows;r methodsFor: 'trajectory accessing!'!
colorSpace
~gself exper}ment trajeétory colorSpace!
description
~self experiment trajectory description!
name
~self experiment trajectory name!
variableCount
~self experiment trajectory variableDefinitions size!

!SLCThreeByThreeBrowser methodsFor: 'accessing'! -
experiment

"return the value of experiment.

For a description of this instance variable, see the

in the accessing method 'experiment:'."

~experiment!
experiment: aParameter

ngset the value of experiment.

aParameter is expected to be of the class aClass.
This instance variable is used to <explanation>."

experiment _ aParameter!

comment

5,108,770 .
351 ' 352
gridTriplets

"return the value of gridTriplets.
For a description of this instance variable, see the comment

in the accessing method 'gridTriplets:'."

| tripletClass |
gridTriplets isNil
g ifTrue:
["Figure out what class the Triplets should belong
to."
tripletClass _ SLColorTriplet allSubclasses detect:
{:each | each new colorSpace = self experiment trajectory colorSpace]
ifNone:
[self inform: 'That space soes
not exist!!"'.
~nil].
gridTriplets _ OrderedCollection new.
1 to: 9 do: [:n | gridTriplets add: tripletClass new].
].
~gridTriplets!

gridTriplets: aParameter
’ "set the value of gridTriplets.

aParameter is expected to be of the class OrderedCollection of
elements of ColorTriplet

subclasses. This instance variable is used.™
gridTriplets _ aParameter!

gridvalues
“return the value of gridValues.
For a description of this instance variabie, see the comﬁeﬁi
in the accessing method ‘gridvalues:‘'.™

gridvalues isNil ifTrue:[gridvalues _ OrderedCollection new.].

~gridvalues!

gridvalues: aParameter

"set the value of gridvalues.

5,108,770
353 354

aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."

gridvalues _ aParameter!

ivvalues

“return the value of ivValues.

For a description of this instance variable, see the comment

in the accessing method 'ivvalues:'."

ivValues isNil ifTrue:[ivValues _ OrderedCollection new.

1 to: self variableCount do:[:n | ivValues add:

~ivvValues!

ivValues: aParameter
"set the value of ivValues.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>.™
ivvValues _ aParameter!

xIndex

“"return the value of xIndex.

nill].

For a description of this instance variable, see the comment

in the accessing method 'xIndex:'."
“xIndex!

xIndex: aParameter

"set the value of xIndex.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
xIndex _ aParameter!

yIndex
"return the value of ylIndex.
For a description of this instance variable, see the

in the accessing method ‘yIndex:'."™

comment

5,108,770

355 356
“yIndex!
yIndex: aParameter
"set the value of yIndex.
aParameter is expected to be of the class aClass.
This instance variable is used to <explanation>.“
.yIndex _ aParameter! !
{SLCThreeByThreeBrowser methodsFor: 'building'!
buildAndAssembleBrowser
"SLCThreeByThreeBrowser newlyBuilt”
N | string paraml param2 varDefs vals message v temp minString

maxString str minStream str2 maxStream theGrid |

"Find out what x and y axis variables are"
varDefs _ self experiment trajectory variableDefinitions.
xIndex _ 0.
[xIndex = 0]
whileTrue:
[string _ FillInTheBlank request: 'Enter a variable
name for the X axis:',
1 to: self variableCount do: [:n'| string = (va;Defs

at: n) name ifTrue: [xIndex _ n}].
xIndex = 0 ifTrue: [self error: 'No variable like

that!!']].
yindex _ 0.
(vIndex = 0]
whileTrue:
- [string _ FillInTheBlank request: 'Enter a variable
name for the Y axis:'.
1 to: self variableCount do: [:n | string = (varDefs
at: n) name ifTrue: (yIndex _ n]].
yIndex = 0 ifTrue: [self error: 'No variable like

that!!']].

5,108,770
357 358

"Find out the values for every other variable in the collection"
vals _ self ivValues.
1 to: self variableCount do:["For each of the variables"
:n] {(n = xIndex) |(n = yindex)) ifFalse:["If it's not the x or
y index"
vals at: n put: nil.
({ivValues at: n) = nil]whileTrue: [message _ 'Value for °'.
v _ varDefs at: n.
str _ ReadWriteStream on: '',.
(v min) printOn: str.
minString _ str contents.
str2 _ ReadWriteStream on: ''.
(v max) printOn: str2.
maxString _ str2 contents,
message _ message , v name asString, ' (min: ', minString , °,
max: ', maxString , ' ', v units, ')',
string _ FillInTheBlank request: message.
vals at: n put: (string asNumber).
1]
ifTrue:[vals at: n put: nil "for the x and y axls related
variables since they are handled elsewise."]).)

self ivValues: vals,
"The x and y variable indices are determined and the values of the

other variables are set."
"Generate the Lab values for each cell in the grid"
"Always three in the X and three in the Y, -1,0, and 1 for now."
self makeCodedGrid. "This sets up a (-1,0,1) OrderedCollection of
values for each of the cells in the grid in gridvalues." ‘

self calculateGridTriplets.

"At this point the OrderedCollection in gridTriplets should
contain the Lab values of the Grid."

theGrid _ SLCColoredBoxesView new.

theGrid buildAndAssembleForInsertionUsing: gridTriplets IndexBase:
100 rows: 3 columns: 3.

~theGrid!

5,108,770 -
359 360

buildAndAssembleGrid
"SLCThreeByThreeBrowser newlyBuilt" »
| string paraml param2 varDefs vals message v temp minString

méxString str minStream str2 maxStream theGrid |

“Find out what x and y axis variables are"
varDefs _ self experiment trajectory variableDefinitions.
xIndex _ 0.
[*Index = 0]
whileTrue:
[string _ FillInTheBlank request: 'Enter a variable

name for the X axis:'.

1l to: self variableCount do: [:n | string = (varDefs

at: n) name ifTrue: [xIndex _ n]].
xIndex = 0 ifTrue: [self error: 'No variable like

that!!']].
vIndex _ 0.
[yIndex = 0]
whileTrue:
[string _ FillInTheBlank request: 'Enter a variable
name for the Y axis:'.
1 to: self variableCount do: [:n | string = (varDefs
at: n) name ifTrue: [yIndex _ n]).
thdex = 0 ifTrue: [self error: 'No variable like
that!!']].

"Find out the values for every other variable in the collection"
vals __ self ivvalues.
1 to: self variableCount do:["For each of the variables"
in] ((n = xIﬁdex) I (n = yIndex)) ifFalse:["If it's not the x or
y index"
vals at: n put: nil.
[(ivValues at: n) = nillwhileTrue: [message _ 'Value for °'.
v _ varDefs at: n.
.- str _ ReadWriteStream on: '‘.
(v min) printOn: str.

minString _ str contents.

5,108,770
361 362

str2 _ ReadWriteStream on: ''.

{v max) printOn: str2.

maxString _ str2 contents.

message _ message , V name asString, ' (min: ', minString , ',
max: ', maxString , ' ', v units, *')'.

string _ FillInTheBlank request: message.

vals at: n put: (string asNumber).

1] _ .

ifTrue:[vals at: n put: nil "for the x and y axis related
variables since they are handled elsewise."}].

self ivValues: vals.
"The x and y variable indices are determined and the values of the

other variables are set."
"Generate the Lab values for each cell in the grid"
"Always three in the X and three in the Y, -1,0, and 1 for now.Q
self makeCodedGrid. "This sets up a (-1,0,1) OrderedCollection of
values for each of the cells in the grid in gridvalues."

self calculateGridTriplets.

"At this point the OrderedCollection in gridTriplets should
contain the Lab values of the Grid."

~gridTriplets!

buildAndAssembleNewGrid

| varDefs vals message v str minString str2 maxString string |
"SLCThreeByThreeBrowser newlyBuilt"

self getXAndY¥Indices.

self getVarvValues.

self makeCodedGrid.

self calculateGridTriplets.

~gridTriplets!

calculateGridTriplets
| inputs
1 to: 89 do:[:n |

inputs _ gridvalues at: n.

5,108,770
363 364

(self gridTriplets at: n) valuel: (self calculateValue: 1 using:
inputs).
(self gridTriplets at: n) value2: (self calculateValue: 2 using:

-

inputs).
(self gridTriplets at: n) value3d: (self calculateValue: 3 using:

inputs)).
~gridTriplets!

getVarValues
| varDefs vals message v str minString stx2 maxString string |
varDefs _ self experiment trajectory variableDefinitions. ‘
"Find out the values for every other variable in the collection”
vals _ self ivValues.
1 to: self variableCount do: [:n | "For each of the variables"
" n = xIndex | (n = yIndex)
ifTrue: [vals at: n put: nil
"for the x and y axis related variables since
they are handled
elsewise."]
ifFalse:
["If it's not the x.or y index"
vals at: n put: nil.
[(ivVvalues at: n)
= nil}
whileTrue:
i [message _ 'Value for '.
' v _ varDefs at: n.
str _ ReadWriteStream on: ''.
v min printOn: str.
minString _ str contents.
str2 _ ReadWriteStream on: '',
v max printOn: str2,
maxString _ str2 contents,
message _ message , Vv name asString
¢, ' (min: ' , minString , ', max: ' , maxString , ' ' , v units , ")'.

string _ FillInTheBlank request:

message.

vals at: n put: string asNumber]]].
- self ivvalues: vals.!

5,108,770
365 366
getXAndYIndices

vrind out what x and y axis variables are"

|} varDefs aStream |

varDefs _ self experiment trajectory variableDefinitions.

aStream _ WriteStream on: (String new: 200). .

aStream nextPutAll: 'Pick Horizontal Variable:'; cr.

xIndex _ 1. v

varDefs do: [:var | aStream nextPutlAll: var name; crj.

aStream skip: -1. ‘

[xIndex = 1]

whileTrue:
[xIndex _ (PopUpMenu labels: aStream contents lines:
#(1)) startUp.
xIndex > 1 ifFalse: [self error: 'You must pick

one!!'l].

xIndex _ xIndex - 1.

"Because of header"

aStream _ nil,

aStream _ WriteStream on: (String new: 200).

aStream nextPutAll: 'Pick Vertical Variable:'; cr.

yIndex _ 1.
) 1 to: varDefs size do: [:n | n = xIndex ifFalse: [aStream
nextPuthAll: (varDefs at: n) name; crl].

aStream skip: -1.

{yIndex = 1})

whileTrue: [yIndex _ (PopUpMenu labels: aStream contents

lines: #(1)) startUp].

"xIndex is already normalized"

yIndex _ yIndex - 1.

"Now so is y"

yIndex >= xIndex

ifTrue: ["second pick was at or after position of first

pick™ v ' .
' yIndex _ yIndex + 1.

"In essence, bump it one")!

makeCodedGrid

5,108,770
367 368

"Generate the Lab values for each cell in the grid"
"aAlways three in the X and three in the ¥, -1,0, and 1 for now."

"Using (X,Y) notation:

1 | (-1,1) ' (0,1) I (1,1 |

0 | (-1,0) 1 (0,0) I (1,0 I
-1 1 (-1,-1) l (0,-1) I (1,-1) |
-1 0 1

| codedvalues codedVals codedOnes x y nTuple |
_ "Lazy initialize. This makes up a 9 triplet set of the proper
sister class."

self gridTriplets.

"I'm doing this on purpose here to make sure it is empty for the
add: below."

gridvalues _ OrderedCollection new.

"codedValues is now set up as an -1,0,1 range n-tuple with nil for
x and y vars." .
codedValues _ OrderedCollection new.
1 to: self variableCount do: [:n | codedValues add: (self
convertValue: (ivValues at: n)
of: m)].
codedOnes _ #(-1 0 1) asOrderedCollécticg.

1 to: 3 do: [:row | 1 to: 3 do:
{:eolumn |

"Make a new one."
nTuple _ OrderedCollection new.
1 to: self variableCount do: {:n | nTuple add:

(codedvValues at: n)].

"Set up X and YY",

5,108,770
369 370

x _ codedCnes at: column.

y _ codedOnes at: 4 - row.
"Cells numbered from upper left"®
nTuple at: xIndex put: x.

nTuple at: yIndex put: y.

gridvalues add: nTuplel]l!

putlLabelsOn
| varDefs xName yName xLabel ylabel |
varDefs _ self experiment trajectory variableDefinitions.
xName _ varDefs at: xIndex name.
yName _ varDefs at: yIndex name.
xLabel _ LabelView label: xName.
yLabel _ LabelView label: yName.! !

1SLCThreeByThreeBrowser methodsFor: 'releasing'!

release
experiment release.
experiment _ nil.
ivValues do:[:each | ivValues at: each release].
ivValues _ nil.
'gridValues do:[:each | gridvalues at: each release].
gridvalues _ nil.
xIndex _ nil.
yindex _ nil.

gridTriplets do:[:each | gridTriplets at: each release].
gridTriplets _ nil.

super release.! !

WE eEm me se ee ce re o we e e we we e e - - omem
.

SLCThreeByThreeBrowser class

instancevariableNames: ''!

5,108,770
37 372

!SLCThreeByThreeBrowser class methodsFor: 'instance creation'!

cn: anExperiment
| tb tripletCollection |
tb _ self new.
tb experiment: anExperiment.
tripletCollection _ tb buildAndAssembleGrid.

~SLCColoredBoxesView on: tripletCollection baselIndex: 10 rows: 3

columns: 3!

openlabeledOn: anExperiment
[tb tripletCollection colors topView varDefs 1lbl xIndex yIndex v
valStr vals str varCount tag xName yName xLabel ylabel |
tb _ self new.
tb experiment: anExperiment.
tripletCollebtion _ tb buildAndassembleNewGrid.
colors _ SLCColoredBoxesView
on: tripletCollection
baselIndex: 10
rows: 3
columns: 3.
“Build the label™ .
varDefs _ anExperiment trajectory variableDefinitions.
bl _ ' .

varCount _ anExperiment trajectory variableDefinitions size.

1 to: varCount do:
[:n

wFor each of the wvariables"
{tb ivvalues at: n) isNil
ifTrue: [tag _ nil]

ifralse:
("If it's not the x or y index"

v _ varDefs at: n.
valStr _ ReadWriteStream on: '',
(tb ivvalues at: n)

printOn: valStr.

tag _ v name asString , ' = ' , valstr

contents}.

5,108,770

373 374
tag = nil
ifralse:
[1bl = ' ' ifFalse: [1bl _ 1bl , '; '].

1bl _ 1bl , tag}].
xName _ (varDefs at: tb xIndex) name.
yName _ (varDefs at: tb yIndex) name.
xLabel _ LabelView label: xName.
ylabel _ LeftLabelView label: yName.
topView _ StandardSystemView
model: self
label: tb name
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderWidth: 1.
topView
addSubView: (LabelView label: 1lbl)
in: (0.1 @ 0.025 extent: 0.8 & 0.05)
borderWidth: 1.
topView
addSubView: xLabel
in: (0.1 @ 0.93 extent: 0.8 € 0.05)
borderWidth: 0. .

topView
addSubView: yLabel

in: (0.03 @ 0.1 extent: 0.05 @ 0.8)
borderWidth: 0.

topView
addSubvView: colors
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 1. '

topView controller open!

openlabeledOn: anExperiment withBase: baselndex

] tb tripletCollection coloxrs topView varDefs 1bl xIndex yIndex v
valStr vals str varCount tag xName yName xLabel ylabel |

tb _ self new.

tb experiment: anExperiment.

tripletCollection _ tb buildAndAssembleNewGrid.

5,108,770
375 , 376

colors _ SLCColoredBoxesView
on: tripletCollection
baseIndex: baseIndex
rows: 3
columns: 3,

"Build the label"

varDefs _ anExperiment trajectory variableDefinitions.
bl v e, | A

varCount _ anExperiment trajectory variableDefinitions size.

1 to: varCount do:
[:n | '
"For each of the variables"
(tb ivvalues at: n) isNil
ifTrue: [tag _ nil)
ifFalse;
["If it's not the x or y index™
Vv _ varDefs at: n.
valStr — (tb ivVvalues ats n) printstring.n

tag _ v name asString , ' = ¢ ¢+ valstr).
tag = nil
ifralse:

[1bl = ' ' ifFalse: [1bl — bl , 'y 1y,
1bl _ 1bl , tagq]].
xName _ (varDefs at: tb xIndex) name.
yName _ (varDefs at: tb yIndex) name.
xLabel _ LabelView label: xName.
yLabel _ LeftlLabelView label: yName.
topView _ StandardSystemview
model: self
label: tb name , ° ' + baseIndex printString
e, (baseIndex + 8) printString
minimumSize: 250 @ 250.
topView cacheRefresh: false.
topView borderWidth: 1.
topView
addSubView: (LabelView label: 1bl)
in: (0.1 @ 0.025 extent: 0.8 € 0.05)
borderWidth: 1.

5,108,770
377 378

topView
addSubView: xLabel
in: (0.1 @ 0.93 extent: 0.8 @ 0.05)
borderWidth: 0.
topView
addSubView: yLabel
in: (0.03 @ 0.1 extent: 0.05 @ 0.8)
borderWidth: 0. '
topView
addSubView: colors
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
borderWidth: 1.

topView controller open!

openOn: anExperiment

] tb tripletCollection |

.tb _ self new.
tb experiment: anExperiment.

tripletCollection _ tb buildAndAssembleGrid.

SLCColoredBoxesView openoﬁ: tripletCollection baselIndex: 10 rows:

3 columns: 3!

startupOn: anExperiment
} baselndex string bottomCell limitCell |
bottomCell _ 7.
"1 through 6 reserved for fixed tools"
limitCell _ 240. "A 3 by 3 takes nine map entries"
baseIndex _ limitCell + 1.
(baseIndex > limitCell | (baseIndex < bottomCell)]
whileTrue:
[string _ FillInTheBlank request: ‘'Beginning color map
index? (7-240)°.
baseIndex _ string asNumber.
baseIndex < bottomCell ifTrue: [self inform: 'Index to
too low!! :' , baseIndex printString]. .
baseIndex > limitCell ifTrue: [self iﬁform: 'Index to

high!! :' , baselndex printStringll.

self openlabeledOn: anExperiment withBase: baseIndex! !

5,108,770
: 379 380
SLCThreeByThreeBrowser subclass: #SLCNByNBrowser

instanceVariableNames: 'rows °
classVariableNames: '!
poolDictionaries: '!

category: 'Color Science Tools'!

! SLCNByNBrowser methodsFor: ‘accessing'!

gridTriplets
"return the value of gridTriplets.
For a description of this instance variable, see the comment

in the accessing method 'gridTriplets:'."

| tripletClass cells |
gridTriplets isNil
ifTrue:
["Figure out what class the Triplets should beloﬁg
to."
tripletClass - SLColorTriplet allSubclasses detect:
[:each | each new colorSpace = self experiment trajectory colorSpace]
ifNone:

[self inform: ‘That space soes

not exist!!"',
*nil}.
gridTriplets _ OrderedCollection new.
cells _ rows * rows.

1 to: cells do: [:n | gridTriplets add: tripletClass

new)j.

1.
“gridTriplets!

Iows

_"return the value of rows. R
For a description of this instance variable, see the comment

in the accessing method 'rows:'."

“rows!

5,108,770
381 382

rows: aParameter
"set the value of rows.
aParameter is expected to be of the class aClass.

This instance variable is used to <explanation>."
rows _ aParameter! !
! SLCNByNBrowser methodsFor: 'building'!

calculatéGridTriplets

! inputs cells |
cells _ rows * rows,
1 to: cells do:[:n |

inputs _ gridvalues at: n.

{self gridTriplets at: n) valuel: (self calculateQalue: 1 using:
inputs).

(self gridTriplets at: n) value2: (self calculateValue: 2 using:
inputs).

(self gridTriplets at: n) value3: (self calculatevalue: 3 using:
inputs)].

~gridTriplets!

makeCodedGrid

"Generate the Lab wvalues for each cell in the grid"

| coededvalues codedvVals codedOnes x y nTuple value |
“"Lazy initialize. This makes up a 9 triplet set of the proper
sister class."

self gridTriplets. - o
"I'm doing this on purpose here to make sure it is

empty for the

add: below."
gridvalues __ OrderedCollection new.

vcodedvValues is now set up as an -1,0,1 range n-tuple with nil for

x and y vars."
codedvalues _ OrderedCollection new.

5,108,770
383 384

1 to: self variableCount do: [:n | codedValues add: (self
convertValue: (ivValues at: n)

of: n)].

codedOnes _ OrderedCollection new.
1 to: rows do: [:n]| value _ (2 * ({n=-1)/(rows=-1))) - 1.
codedOnes add: value].
1 to: rows do: [:row | 1 to: rows do:
[:column |
"Make a new one."
nTuple _ OrderedCollection new.
1l to: self variableCount do: [:n | nTuple add:
(codedValues at: n)].
“Set up X and Yy".
X _ codedOnes at: column.
¥ _ codedOnes at:'(rows + 1) - row.
“"Cells numbered from upper left"
nTuple at: xIndex put: x.

nTuple at: yIndex put: y.

gridvalues add: nTuple}]! !

TTET S mm o, eme e e et e e e e e e - —— "t

SLCNByNBrowser class

instanceVariableNames: ''!
! SLCNByNBrowser class methodsFor: ‘'instance creation'!

openlabeledOn: anExperiment withBase: baseIndex size: rows

| tb tripletCollection colors varDefs lbl varCount tag v valStr
xName yName xLabel ylabel topView baseTop |

tb _ self new.

tbh rowS: rows.

tb experiment: anExperiment.

tripletCollection _ tb buildAndAssembleNewGrid.

colors _ SLCColoredBoxesView

on: tripletCollection

5,108,770
385 386

baseIndex: baseIndex

rows: rows

coclumns: rows.
"Build the label"

varDefs _. anExperiment trajectory variableDefinitions.
ibl v,

varCount _ anExperiment trajectory variableDefinitions size.
1 to: varCount do:
[:n |
. "For each of the variables"
(tb ivValues at: n) isNil
ifTrue: [tag _ nii]
ifFalse:
["If it's not the x or Y index"
v _ varDefs at: n.
valStr _ ReadWriteStream on: '°'.

(tb ivvalues at: n)

printOn: valStr.

tag _ v name asString , ' = ¢ ValStr
contents].
tag = nil
ifralse:
[1bl = ' ' ifFalse: [lbl _1ibl , r; 3.,

1bl _ 1bl , tag]l].

#Name _ (varDefs at: tb xIndex) name.

yName _ (varDefs at: tb yIndex) name.

xLabel _ LabelView label: xName.

ylabel _ LeftlabelView label: yName.

baseTop _ baselndex + (rows * rows) -1,

topView _ StandardSystemView
model: self .
label: (tb name, ° ', baselIndex pPrintString,

':', baseTop printString) ‘

minimumSize: 250 @ 250,

topView cacheRefresh: false.

topView borderWidth: 1.

topView

addSubView: (LabelView label: 1bl)

5,108,770
387 388
in: (0.1 @ 0.025 extent: 0.8 @ 0.05)

borderWidth: 1.
topView
addSubView: xLabel A
in: (0.1 @ 0.93 extent: 0.8 @ 0.05)
borderWidth: 0. |
topView)
addSubview: yLabel
in: (0.03 @ 0.1 extent: 0.05 @ 0.8)
borderWidth: 0.
topView
addSubView: colors
in: (0.1 @ 0.1 extent: 0.8 @ 0.8)
boxrderWidth: 1.

topView controller open!

startupOn: anExperiment
| baseIndex string rows limitCell topCell bottomCell |
bottomCell _ 7.

"l through 6 reserved for fixed tools"
limitCell _ 250.

baseIndex _ limitCell + 1.
[baseIndex > limitCell | (baseIndex < bottomCell)]
whileTrue:
(string _ FillInTheBlank request: 'Beginning color map
index? (7-250)°'.
baseIndex _ string asNumber.
baseIndex < bottomCell ifTrue: [self inform: 'Index to
too low!! :' , baseIndex printString). '
baseIndex > limitCell ifTrue: [self inform: 'Index to
high!! :' , baseIndex printString]].
topCell _ limitCell + 1,
[topCell > limitCell}
thleTrue:
[string _ FillInTheBlank request: 'Cells on an edge? (
2-15) .
TOoWS _ stfing asNumber.

topCell _ baselndex - 1 + (rows * rows).

5,108,770

389

topCell > limitCell ifTrue:

to high!! :! topCell printString].

390

[self inform: 'Top index

rows < 2 ifTrue:([self inform: 'Cannot be a single

cell.'. topCell _ limitCell + 1)

1.
self -

openlabeledOn: anExperiment

withBase: baseIndex

size: rows! !

What is claimed is:

1. A food product suitable for storage at temperatures
of at least 40 degrees Fahrenheit having a browning
surface are for developing a desired browning effect
during preparation of the food product for consump-
tion, the food product comprising:

(a) a starch based component;

(b) a browning system applied to the starch based
component to provide the browning surface area;
and

(c) the browning system comprising Maillard
browning reactants for developing the desired
browning effect during microwave irradiation, the
Maillard browning reactants being capable of at
least partially reacting prior to exposure to micro-
wave heating, and a carrier system containing the
Maillard browning reactants, the carrier system
maintaining the Maillard browning reactants in a
substantially reactively immobolized state on the
food product prior to microwave irradiation and
while the food product is at a temperature of at
least about 40 degrees F. for about two days,
wherein the carrier system is selected from the
group consisting of a lipid, water, an adsorptive
silicate and mixtures thereof. i

2. A process for making food product suitable for
Storage at temperatures of at least about 40 degrees
Fahrenheit which has a browning surface area for de-
veloping a desired browning effect during preparation
of the food product for consumption by microwave
radiation, the process comprising:

(a) selecting a starch based component;

(b) applying a browning system to a browning surface

area of the starch based component; and -

{c) the browning system comprising Maillard
browning reactants for developing a desired
browning effect during microwave irradiation, the
Maillard browning reactants being capable of at
least partially reacting prior to exposure to micro-
wave irradiation, and a carrier system containing
the Maillard browning reactants, the carrier system

15

20

25

30

35,

45

50

maintaining the Maillard browning reactants in a 60

substantially reactively immobilized state on the
food product prior to microwave irradiation and
while the food product is at a temperature of at
least about 40 degrees F. for at least about two

days, wherein the carrier system is selected from 63

the group consisting of a lipid, water, an adsorptive
silicate and mixtures thereof.

3. A food product suitable for storage at temperatures
of at least about 40 degrees Fahrenheit having a
browning surface area for developing a desired
browning effect during preparation of the food product
for consumption by microwave irradiation, the food
product comprising:

(a) a starch based component;

(b) a first Maillard browning reactant applied to the
browning surface area of the starch based compo-
nent;

(c) a second Maillard browning reactant applied to
the browning surface area, the second Maillard
browning reactant being complementary to the
first Maillard browning reactant for reacting there-
with to develop the desired browning effect during
microwave irradiation, the first and second Mail-
lard reactants being capable of at least partially
reacting prior to exposure to microwave irradia-
tion; and

(d) the second Maillard browning reactant being
contained in a carrier system for maintaining said
second Maillard browning reactant in a substan-
tially reactively immobilized state on the food
product prior to microwave irradiation and while
the food product is at a temperature of at least
about 40° F. for at least. about two days, wherein
the carrier system is selected from the group con-
sisting of a lipid, water, an adsorptive silicate and
mixtures thereof.

4. A food product according to claim 1, in which the
carrier system maintains the Maillard browning reac-
tants in a substantially reactively immobilized state
while the food product is at temperatures of up to about
70° F. for up to about two days.

5. A food product according to claim 1 or claim 4, in
which the carrier system maintains the Maillard
browning reactants in a substantially reactively immobi-
lized state for up to at least about four days.

6. A food product according to claim 2, in which the
carrier system maintains the Maillard browning reac-
tants in a substantially reactively immobilized state
while the food product is at temperatures of up to about
70° F. for up to several days.

7. A food product according to claim 2 or claim 6, in
which the carrier system maintains the Maillard
browning reactants in a substantially reactively immobi-
lized state for up to at least about four days.

8. A food product according to claim 1, in which the

5,108,770

391

carrier system maintains the Maillard browning reac-
tants substantially reactively immobilized by maintain-
ing at least one of the reactants isolated from moisture.

9. A food product according to claim 8, wherein the
carrier is a lipid.

10. A food product according to claim 8, wherein the
adsorptive silicate maintains the Maillard browning
reactants or moisture in an adsorbed condition prior to
microwave irradiation to thereby maintain the reactants
in a substantially reactively immobilized state.

11. A food product according to claim 1, wherein the
Maillard browning reactants comprise a reducing sugar
and a proteinaceous substance. ‘

12. A food product according to claim 11 wherein the
reducing sugar is selected from the group consisting of
a triose, tetrose, pentose and hexose.

13. A food product according to claim 11 wherein the
reducing sugar is selected-from the group consisting of
glucose, fructose and xylose.

14. A food product according to claim 11 wherein the
proteinaceous substance is selected from the group con-
sisting of soy protein, yeast, protein, albumin, and ca-
sein.

15. A food product according to claim 1, wherein the
carrier system is a lipid.

16. A food product according to claim 15, wherein
the lipid is a shortening.

17. A food product according to claim 16, wherein
the shortening comprises one or move vegetable oils.

18. A food product according to claim 1, wherein the
Maillard browning reactants comprise a reducing sugar
and a proteinaceous substance which have been prere-
acted under conditions facilitating reactions leading to
Maillard browning.

19. A food product according to claim 18, wherein
the Maillard browning reactants comprise a.reducing
sugar and a proteinaceous substance which having been
prereacted under conditions facilitating reactions lead-
ing to Maillard browning so that substantially colorless
Maillard browning precursors have formed.

20. A food product according to claim 1, wherein the

10

15

20

25

35

45

50

55

65

392

Maillard browning reactants include a browning con-
troller.

21. A food product according to claim 20, wherein
the browning controller is one or more of the group
consisting of a pH elevating agent, a metal ion, and a
phosphate salt. ‘

22. A process according to claim 2, which includes
the step of storing the food product at a temperature of
below about 40° F. before microwave irradiation.

23. A food product according to claim 1, in which the
carrier system is free of moisture.

24. A food product suitable for storage at tempera-
tures of at least about 40 degrees Fahrenheit having a
browning surfice area for developing a desired
browning effect during preparation of the food product
for consumption, the food product comprising:

(a) a starch based component;

(b) a browning system applied to the starch based

component to provide the browning surface area;

(c) the browning system comprising Maillard

browning reactants for developing the desired
browning effect during microwave irradiation, the
Maillard browning reactants being capable of at
least partially reacting prior to exposure to micro-
wave irradiation, and a carrier system containing
the Maillard browning reactants, the carrier system
maintaining the Maillard browning reactants in a
reactively immobilized state on the food product at
temperatures of at Jeast about 40 degrees Fahren-
heit prior to microwave irradiation, wherein the
carrier system is selected from the group consisting
of a lipid, water, an adsorptive silicate and mixtures
thereof.

25. A food product according to claim 18, wherein
the Maillard browning reactants comprise a reducing
sugar and a proteinaceous substance which have been
prereacted under conditions facilitating reactions lead-
ing to Maillard browning so that substantially colorless

in situ Maillard browning precursors have formed.
x & % % =%

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,108,770
DATED - April 28, 1992

INVENTOR(S) : David J. Domingues, et. al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Col. 390, line 58, delete "A food product", insert "A process"
Col. 390, line 63, delete "A food product", insert "A process"
Col. 391, line 29, delete "move", insert "more"

Col. 391, line 37, delete "having", insert "have"

Signed and Sealed this
Seventh Day of September, 1993

Aot 6«.« Zacmu-\ |

BRUCE LEHMAN

Attesting Officer “Commissioner of Patents and Trademarks

