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Visual motion is processed by neurons in primary visual cortex that are sensitive to spatial
orientation and speed. Many models of local velocity computation are based on a second stage that
pools the outputs of first-stage neurons selective for different orientations, but the nature of this
pooling remains controversial. In a human psychophysical detection experiment, we found
near-perfect summation of image energy when it was distributed uniformly across all orientations,
but poor summation when it was concentrated in specific orientation bands. The data are consistent
with a model that integrates uniformly over all orientations, even when this strategy is sub-optimal.

When a viewer moves relative to the environment, the visual
image projected onto the retina changes accordingly. Within small
regions of the retina and for short durations, this motion is com-
monly approximated as a two-dimensional translation. The field
of velocity vectors associated with each such region is referred to
as ‘optic flow’. Physiological and psychophysical experiments
demonstrate that mammalian cortex uses mechanisms sensitive
to local image motion'. These mechanisms are generally consid-
ered to form the neural substrate for representing optic flow.

Neurons in primary visual cortex perform the first stage of cor-
tical motion processing. They are selective for both the spatial ori-
entation and speed of the visual input within a spatially localized
region. Because of their orientation specificity, however, these neu-
rons are impaired by an ambiguity commonly known as the ‘aper-
ture problem’: each neuron can signal the speed only of motion
perpendicular to the orientation to which it is tuned?; thus, it is
insensitive to the velocity component parallel to this orientation. It
is suggested that a second stage of processing, commonly associ-
ated with visual area MT, computes an unambiguous representa-
tion of local pattern velocity by selectively combining the outputs
of the first-stage detectors?=. Although such an integration stage
seems largely consistent with psychophysical and physiological
data, the precise form of the combination rule remains unclear.
Here we describe psychophysical experiments designed to test the
predictions of several general combination rules.

The simplest combination strategy is to integrate responses of
all those first-stage mechanisms consistent with a particular two-
dimensional velocity?. It is convenient to describe this construction
in the three-dimensional spatiotemporal frequency domain, where
the spectral energy of a rigidly translating image is concentrated on
an oblique plane (Fig. 1a and b). The orientation of this plane
uniquely specifies the translational velocity (both speed and direc-
tion) of the luminance pattern®. First-stage motion detectors in the
mammalian visual system can be described as computing the spec-
tral energy within limited bands of spatiotemporal frequency’. Thus,
a pattern-velocity detector may be constructed by summing the
weighted outputs of first-stage mechanisms tuned to spatiotempo-
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ral frequency bands that lie on a common plane (Fig. 1¢)®'°. The
population response of a family of detectors built in this way can
determine the presence and velocity of local translating patterns,
and the responses of individual detectors are well matched to the
behaviors of a subset of neurons in visual area M T,

Alternatively, the visual system could use an adaptive integra-
tion rule, selectively combining only those first-stage detectors
that are tuned to the spatial structure of the image. For example,
one type of model makes initial robust estimates of the compo-
nents of a pattern by selecting those detectors responding to the
stimulus but ignoring those responding to noise!!. These one-
dimensional estimates are then combined to produce an estimate
of the two-dimensional pattern velocity that is most consistent
with the measured one-dimensional velocity components. In gen-
eral, such adaptive pooling rules produce more efficient motion
detectors than fixed pooling rules because the detector is better
matched to the signal. Human observers adapt their spatial pool-
ing to improve the detection of static images'?. Thus, it is plausi-
ble that they may do the same for moving images.

We designed a set of psychophysical detection experiments to
rigorously test the predictions of three models for pooling of spec-
tral energy: (1) a planar power detector that sums the signal ener-
gy over all orientations in a fixed planar region of spatiotemporal
frequency, (2) an adaptive planar power detector that sums ener-
gy only over those regions of a plane containing the signal and
(3) an adaptive unrestricted power detector that can sum energy
over arbitrary regions of spatiotemporal frequency. Experimental
stimuli were constructed by summing dynamic random noise
patterns that were band-limited using spatiotemporally oriented
filters analogous to those used to describe first-stage motion
mechanisms. Each of the three models makes distinct subthresh-
old summation predictions for the detection of such stochastic
signals embedded in white noise. The planar power detector pre-
dicts optimal summation performance when signal energy is dis-
tributed uniformly over all spatial orientations in a plane.
However, this model predicts suboptimal performance when the
signal energy is concentrated in a subset of planar orientation
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Fig. 1. A translational motion detector. (a) Space-time luminance pattern of an image translating to the right. This is a
representation of the intensity information in the retinal image (the x—y plane) over time (t). The rightward motion can
be inferred from the oriented pattern on the x—t face. (b) The Fourier amplitude spectrum of the luminance pattern,
represented by the intensity of points in a three-dimensional spatiotemporal frequency domain. Non-zero Fourier
amplitudes are constrained to lie on a plane through the origin. The orientation of this plane uniquely specifies the

lus in the plane). A two-alterna-
tive forced choice task was used
to measure detection thresholds
for each of the three stimuli.
Stimuli were presented in two
consecutive intervals: one con-
tained the signal added to
broadband white noise and the
other only white noise. Subjects
were asked to judge which inter-
val contained the signal. Thresh-
olds were estimated by fitting a
psychometric function to the
data and selecting the contrast
energy producing 81.1%
detectability. Different stimulus
types were presented in distinct

direction and speed of translation. (c) Construction of a translation detector'?, illustrated in the Fourier domain. Pairs experimental sessions, and sub-
of balls symmetric about the origin indicate the Fourier amplitude spectra of band-pass filters whose peak frequencies jects were told which stimulus

lie in the plane. A translation detector can be constructed by summing the squared outputs of such filters.

type was being used. Before data
collection, subjects were given

bands or distributed over non-coplanar regions of spatiotempo-
ral frequency, because the model sums both signal and noise in
these cases. Similarly, the adaptive planar power detector predicts
optimal performance for any signal whose energy is concentrated
in a plane, regardless of orientation content, but sub-optimal per-
formance for stimuli composed of non-coplanar distributions of
signal energy. Finally, the adaptive unrestricted power detector
predicts optimal performance for any distribution of signal ener-
gy, with no improvement in performance for planar distributions.

REesuLTs

In the first experiment, we tested these predictions by measuring
detection thresholds for three types of spatially localized stochastic
signals embedded in white noise. Signals were generated by filter-
ing spatiotemporally white noise with different sets of band-pass fil-
ters. ‘Component’ stimuli (Fig. 2a) had spectral energy confined to
a single pass-band. ‘Plaid’ stimuli (Fig. 2b) had two component
bands on the same plane. ‘Planar’ stimuli (Fig. 2¢) were constructed
using a set of component filters arranged in a ring on an oblique
plane (so that signal energy was uniformly distributed over an annu-

a Component

Fig. 2. Filter sets and examples of their correspond-
ing signals. Top row, level surfaces (65% of peak
response) of the three different filter sets used to
generate stimuli. Bottom row, space—time lumi-
nance patterns of signals produced by passing spa-
tiotemporal Gaussian white noise through the
corresponding filter sets. (a) The ‘component’ stim-
ulus, constructed from a spatially and temporally
band-pass filter. The x—y face of the stimulus shows
structures that are spatially band-pass and oriented
along the x-axis. The orientation of structures on
the x—t face indicates rightward motion. (b) The
‘plaid’ stimulus, constructed from two ‘component’
filters lying in a common plane. The x—y face of the
stimulus shows a mixture of spatial structures with
dominant orientations close to the y-axis. (c) The
‘planar’ stimulus, constructed from a set of ten
‘component’ filters lying in a common plane. The
stimulus is spatially band-passed and isotropic (x-y
face) and moves rightward (x—t face).

o
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several hours practice for each
stimulus type over the course of
several days, until performance saturated (see Methods).

To compare detection performance across stimuli, we assumed
that performance for the component stimulus reflects the detec-
tion efficiency of a band-limited, first-stage motion-energy detector
mechanism. (The component signal has a bandwidth similar to
psychophysically optimal bandwidths'?). Specifically, we assumed a
model in which subjects made detection judgments for the com-
ponent stimulus based on output of a filter matched to the com-
ponent signal; this output was then corrupted by additive internal
noise. The internal noise represented the added uncertainty creat-
ed by neural noise, filter/signal mismatch and central-decision noise.
We estimated internal noise by comparing subjects’ thresholds with
that of an ideal observer for the component stimulus. Assuming
approximately constant internal noise across all stimulus condi-
tions, we derived optimal summation predictions for the plaid and
planar stimuli. These predictions reflected the performance of ideal
observers that sum energy over only the spatiotemporal frequency
bands containing the signal in a stimulus and were corrupted by a
constant level of internal noise. (Such a model gives the common-
ly cited ‘square-root law’ for contrast summation.)

b Plaid C Planar

()

nature neuroscience * volume 3 no 1 « january 2000



#2 © 2000 Nature America Inc. ¢ http://neurosci.nature.com

#2 © 2000 Nature America Inc. * http://neurosci.nature.com

articles

Fig. 3. Detection thresholds. (a) Per

W Component formance of three subjects for the three
O Plad stochastic signals of Fig. 2. Threshold
0 Planar signal-to-noise ratio (SNR) for 81.1%
detectability. SNR is calculated as the

ratio of the signal power to the back-

ground-noise power. Heavy black lines

indicate predictions for ideal summa-

tion, derived from the component con-

dition thresholds. (b) Detection

~l~ efficiencies for the three stimulus types.
Efficiencies are plotted in proportions,

with 1.0 reflecting perfect performance
(matching that of an ideal observer
tuned to the signal structure for that
particular stimulus). The differences
between the efficiencies of the pattern
stimuli (plaid and planar stimuli) and the
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tern’s components.
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Figure 3a shows subjects’ detection thresholds for the compo-
nent, plaid and planar stimuli. The heavy black lines on the plaid
and planar plots represent predictions of ideal summation derived
from the component data. The plaid data show little or no sum-
mation, whereas thresholds for the planar stimulus fell well with-
in the range predicted by perfect summation. Figure 3b shows an
alternative characterization of the results. We plotted subjects’
detection efficiencies for each of the three types of stimuli. Detec-
tion efficiencies were computed by comparing subjects’ detection
thresholds with those of ideal observers optimally tuned to the
signals contained in the stimuli. (Note that the ideal observers are
different for each of the three stimulus types.) Efficiency provides
a measure of the fraction of stimulus information effectively used
by subjects in performing the detection task. Because perfect sum-
mation is ideal for these experiments, efficiency is also a measure
of summation. The significantly lower detection efficiencies for
the plaid stimulus than for the component stimulus reflect poor
summation for the plaid. Conversely, equal detection efficiencies
for the planar stimulus and the component stimulus reflect near-
ly optimal summation for the planar stimulus.

Of the three detection models described above, the data are
clearly most consistent with the planar power-detector model.
The experiment, however, only compared summation perfor-
mance for two types of ‘pattern’ stimuli. Motivated by the obser-
vation that the planar power-detector model predicts
progressively improved summation when signal energy is dis-
tributed more broadly across spatial orientations in a plane, but
not when the energy is distributed out of a plane, we ran a second
experiment. We generated a new set of stochastic signals to test
this prediction. Signals for the stimuli were created by passing
spatiotemporal white noise through three configurations of fil-
ters (Fig. 4a). The first was a plaid signal, similar to the plaid used
in experiment 1. The second was a ‘planar triplet’, created by
adding a component band to the plaid, in the same plane as the
plaid. The third was a non-planar triplet, created by adding a
component band out of the plane of the plaid. Detection thresh-
olds were measured using the same method described for exper-
iment 1. The planar power-detector model predicts improved
summation for the planar triplet relative to the plaid, but no
improved summation for the non-planar triplet.

Detection thresholds for the planar triplet were, as predicted,
lower than for the plaid, whereas there was no significant differ-

nature neuroscience * volume 3 no 1 * january 2000

ence between those for plaid and non-planar-triplet stimuli
(Fig. 4b). Figure 4c shows subjects’ efficiencies for detecting each
of the three signals used in the experiment. Detection efficiency
was significantly better for the planar triplet than for the plaid,
implying improved summation for the triplet stimulus (Fig. 4c).
Whereas detection efficiencies for the planar triplet were sub-
stantially better than for the plaid stimulus, subjects’ efficiencies
for the planar triplet remained lower than for the planar stimu-
lus in experiment 1 (Fig. 3). Again, this is consistent with the pla-
nar power-detector model, which predicts progressively better
summation as signal energy is distributed more broadly over a
plane in spatiotemporal frequency, attaining ideal summation
only when the energy is distributed uniformly over the plane—
a stimulus that best matches the putative detector.

DiscussioN

We can summarize the qualitative results of experiments 1 and
2 as follows: subthreshold summation of signal-contrast energy
improved as the energy was distributed more and more broadly
around different orientations in a plane in spatiotemporal fre-
quency, but did not improve when the energy was distributed
into non-planar regions of spatiotemporal frequency. The lack
of summation for non-planar regions agrees with previous stud-
ies suggesting a lack of generic summation for components mov-
ing in opposite directions!4-1¢. Stated more plainly, detection
efficiencies improve as more orientations are added to a moving
pattern, as long as the motion of those orientation components
are consistent with the velocity of the pattern. Of the three detec-
tion models proposed in the introduction, these results are most
consistent with the planar power-detector model.

We extended the analysis one step further by comparing per-
formance of a particular planar power detector on the five dif-
ferent ‘pattern’ stimuli used in the experiments with that of the
subjects. The detector optimally summed energy over the band of
frequencies contained in the planar stimulus from experiment 1
(using a matched ‘power’ filter—see Methods). We assumed this
detector’s output to be corrupted by levels of internal noise esti-
mated from subjects’ detection thresholds for the component
stimulus in experiment 1. Figure 5 shows the model predictions
for the five pattern stimuli used. Given the assumptions built
into the model concerning the exact spatiotemporal frequency
band covered by the planar power detector, the match is sur-
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Fig. 4. Experiment 2. (a) Filters used to generate stimuli. (b) Threshold SNRs for detecting the
three types of stimuli in. Black bands indicate the predictions of ideal summation, based on sub-
jects’ detection thresholds for the component stimulus used in experiment . (c) Detection effi- Orientation, further processing is required to
ciencies for the three stimulus types. The results show a large increase in efficiency for the account for the full range of motion-percep-
in-plane triplet over the plaid and a decrease for the off-plane triplet, indicating increased summa-  tion phenomena. For example, although pla-

tion with additional power on a common plane.
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tiotemporal frequency. Such mechanisms have
been plausibly linked to the subclass of ‘pat-

B Pad B Pad tern’ neurons in the middle temporal (MT)
O Inplane O Inplane visual area!?. The model may be contrasted
O off plane

with adaptive velocity-estimation models
dynamically tuned to the spatial-orientation
content of the image. Our subthreshold sum-
mation results favor the fixed pooling model
over adaptive models.

As with all psychophysical studies, we had
to make certain assumptions to draw con-
clusions about the underlying neural mech-
anisms. In particular, we assumed that
detection of single component signals is
mediated by responses of first-stage energy
mechanisms, but that detection of compound
signals is mediated by second-stage respons-
es. In addition, we assume that observers can
learn (through training) to attend to the most
sensitive mechanism for each stimulus.

Although our experiments strongly argue
for second-stage mechanisms that pool over

Subject

nar pooling models are capable of

prisingly good. That is, not only do the qualitative results follow
the predictions of the planar power-detector model, but the quan-
titative results are well fit by a pre-defined instantiation of the
model (without fitting the parameters of the model to the data).

Our experiments critically test the predictions of a simple model
for velocity-tuned motion detectors in the mammalian visual sys-
tem. The model detectors sum outputs of early motion-energy
detectors with different preferred orientations and spatiotempo-
ral frequency bands that intersect a common plane. The result is
a family of velocity-tuned detectors that measure the stimulus ener-
gy in fixed, orientationally broadband, planar regions of spa-
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representing more than one motion in a
given local region'?, they are unable to pro-
vide a consistent account of whether stimuli
appear to move coherently. Additional computations are neces-
sary to account for such phenomena. Athough our experimen-
tal results suggest fixed pooling over orientation, they do not
preclude the possibility of adaptive integration over spatial posi-
tion, time or spatial frequency (scale). Adaptive integration over
spatial position, for example, would be a useful strategy for pre-
venting combination of information across occlusion bound-
aries. The experiments described herein may be naturally
extended to examine the integration of first-stage mechanisms
over these other domains.

METHODS
Stimuli in the experiment subtended 2.2° of visual angle, had a
duration of 0.43 s and were displayed in 12-bit precision on a cal-
ibrated gamma-corrected gray-scale monitor. Observers fixated a
small black dot 0.2° above the stimulus and were given several
hours practice for each stimulus type over the course of several
days until performance saturated. Observers were given auditory
feedback after every trial in all experimental sessions. Only one
signal type was used in a given 1-h experimental session. Average
signal energy was varied using the method of constant stimuli. The
average background noise energy was fixed at 0.26 degrees?-s.
Thresholds were estimated from the maximum-likelihood fits
of two-parameter Weibull functions, for which the threshold
parameter O is a measure of signal-to-noise power at 81.1% cor-
rect for a 2AFC task. Standard errors were computed both from

Fig. 5. Threshold SNRs for detecting the five types of pattern stimuli
replotted from experiments | and 2, where Plaid | in the legend denotes
the plaid from the first experiment and Plaid 2 from the second. Plaid | dif-
fers from Plaid 2 in that its energy is more diffusely spread over frequency.
Black bands indicate the predictions of a planar filter; based on subjects’
detection thresholds for the component stimulus used in experiment |.
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the Hessian of the likelihood function of the fit and using a Monte
Carlo sampling method.

The component filter has an amplitude spectrum given by
C(w, Wy W) = R(w,) |cos(wp)|* [cos(wyy — wy)|* in spherical fre-
quency coordinates. The frequency radius w, is given by
W, Vw2 + > + (y/2.1)* (cycles per degree, cycles per degree,
cycles per s). The elevation shift 0, = 36.9° acts to rotate the filter
out of the spatial frequency plane into a plane corresponding to a
1.93 degrees per s translation downward. The radial frequency func-
tion R is a smooth box function whose transitions from 0 to 1 are
given by 1/2 cycle of a cosine function. This function has low/high
cutoffs of (0.49, 7.6) cycles per degree and the cosine transition
regions have widths of 1.45 cycles per degree. The plaid signal was
constructed by adding two component filters, rotated by +70° and
—70° within the common plane. The planar signal was construct-
ed using a sum of 10 component filters, rotated by multiples of 18°
and constrained to lie in a common plane. For the second experi-
ment, the filters were modified to decrease the spectral spread. They
have the form BP(w,, 0y, () = W () Wy(wg) W(wy,), where W, is
a smooth box function on the variable x. W, had a transition region
width of 1.45 and low/high frequency cutoffs of (0.49, 7.6) cycles
per degree visual angle. Wgand W,, had transition widths of 8° and
high/low cutoffs that spanned 36°. These filters were rotated to lie in
the same positions as the component and plaid filters for the plaid
and planar triplet. The off-plane non-planar triplet component,
however, had an elevation shift corresponding to a slower 0.26
degrees per s translation downward.

Ideal observers for the task are matched filter power detec-
tors'’. Let F(w,, 0, w)) denote the spectrum of the signal nor-
malized to one, and N(w,, &, ) the (complex) spectrum of the
noise. Let |X(0,, w,, w)|* = X(w,, w,, w) - X(w,, 0, 0)* denote
the inner product of the complex function with its complex con-
jugate. Then the spectrum of the received signal |S(w,, w,, )[? is
s? |F(0, 3, wy)|* + |N(0, 1y, wy)]? on the signal plus noise inter-
val and |[N(w,, w,, w)|> = N? on the noise-alone interval. The best
possible performance can be achieved by computing the energy
E=[|FWw, w, 0) |S(w, w, 0)[? dw, dw, dw, over both signal
plus noise and noise intervals and using the difference of these
values as a decision variable'2. In practice, the set of frequencies
are quantized, and the integral is computed as a sum over
1.3 X 10° frequency samples.

Efficiencies are approximately given by the ratio of ideal to
human squared energy thresholds. This approximation was cor-
rected through simulations of the ideal, and the simulation val-
ues are shown in the figures. Performance of the matched filter
depends on the probability, p(E; — E, > 0), that the difference in
energies measured by the filter on two intervals is greater than
zero. To compute this probability, we derive an approximate
expression for the distribution of E,— E, . For the stimuli used, the
amplitude spectrum of the signal S(w,, 3, ;) consists of inde-
pendent (real and imaginary) Gaussian-distributed random vari-
ables at each frequency with zero mean and variance given by
either s [F(w,, @, 0)]? + [N(w,, 0, w,)|* on the signal interval
or |[N(w,, @, w)|? on the noise-alone interval. The power spec-
trum, as the product of the signal amplitude with its complex
conjugate, consists of Chi-squared random variables with two
degrees of freedom X?(2) at each frequency, which are scaled by
the squared amplitude spectrum of the signal. Because the ener-
gy is the sum of an extremely large number of X?(2) random vari-
ables (one for each frequency), weighted by the product of the
filter and the signal power spectrum, we can use the law of large
numbers to generate an extremely good bound on performance
(<< 1% error from true performance). By the law of large num-
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bers, E, — E, is Gaussian distributed, and hence can be charac-
terized by its mean and variance. The mean and variance of
E, — E, are simply the sums of the means and variances of the
X3(2) variables at each frequency. Computing the means and vari-
ances of the X2(2) variables that have been scaled by |F(w,, w,,
W% - (82 |F(w, wy, )2 + [N(w, w,, )[?) on the signal interval
and |F(w,, 0, )[? - (IN(w,, @, 0)]?) on the noise interval, and
letting F"S" = X [F(w,, @, &)|™ [N(w@,, @, &)|", then with a lit-
tle algebra, the mean and variance E; — E, are given by
Wq = 25°F2F? and 0% = 8(s*F*F* + 2 s’F*F2 N + 2 F*N?), respec-
tively. Then p(E,— E, > 0) = 1 — ®(0, Wy, 0%4), where P is the
cumulative Gaussian distribution.

To compute summation predictions, we modeled component
performance as ideal but with the variance given by 024 + 02, crnap
so that p(E,— E, > 0) =1 — ®(0, Hig, 0%y + O%ernal) - Setting
p(E,—E, > 0) = 81.1 and plugging in the subject’s threshold into 4
and 0%, we solved for 0% .,,..- To generate predictions, the
0%, erma Was then added to the ideal variance for each of the other
signal types, and a predicted threshold for 81.1% was computed.
Predictions for the planar model were generated in a similar man-
ner. If we represent the planar filter amplitude spectrum as
P(w,, w,, &) then the planar model computes the energies
E, =Z |P(w, W, W) [S(w, w, w)]? on both intervals. The deci-
sion variable mean and variance are then given by [y = 2s2P2F?
and 0% = 8(s*P*F* + 2s2P*F? N + 2P*N?). Threshold predictions
were generated from these expressions using the internal noise
estimated from the observer’s component stimulus performance.
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