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Summary

The paper surveys the literature on the bandit problem, focusing on its recent development in the
presence of switching costs. Switching costs between arms makes not only the Gittins index pol-
icy suboptimal, but also renders the search for the optimal policy computationally infeasible. This
survey will first discuss the decomposability properties of the arms that make the Gittins index
policy optimal, and show how these properties break down upon the introduction of costs on
switching arms. Having established the failure of the simple index policy, the survey focus on the
recent efforts to overcome the difficulty of finding the optimal policy in the bandit problem with
switching costs: characterization of the optimal policy, exact derivation of the optimal policy in
the restricted environments, and lastly approximation of optimal policy. The advantages and dis-
advantages of the above approaches are discussed.
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1 INTRODUCTION

Consider a sequential decision problem where at each time the agent must
choose one of n available actions, knowing the “state” of each action. The
chosen action reveals some information about the action and the agent
receives a corresponding payoff to the action. States of actions may change
over time. The information received by the agent may help to decide the
choice of actions in the future. The goal of the agent is to maximize the pres-
ent value of the stream of payoffs he or she would receive by choosing the
right sequence of actions.

The above problem is known as the “bandit” problem in the literature
(Berry (1972), Whittle (1980), Berry and Fristedt (1985), Gittins (1989)). The
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name bandit comes from an n-armed bandit, which is a slot machine with
n arms. The bandit problem found applications in numerous fields: clinical
trials, optimal experiments, new product development, job search, oil explo-
ration, research & development, technology choice, and resource allocation.’
Under certain conditions, the bandit problem can be treated as a dynamic
programming problem (Bellman (1956, 1957)), which has an optimal solution
given by a stationary policy. To solve for the optimal policy, one must com-
pute every possible realization of payoffs for each arm. This makes the direct
computation of the stream of payoffs for each action in every state a daunt-
ing and impractical task, since the state space of each arm is huge as it must
count all possible realizations.

What makes the bandit problem tractable is Gittins’ index policy. Accord-
ing to Gittins (1979) and Gittins and Jones (1974), the index of an arm
can be defined as the maximal attainable payoff rate of the arm. Gittins
(1979) showed that in the sequential problem mentioned above, it is optimal
to choose an arm with the highest index. This policy is relatively simple to
implement because the index of an arm depends only on the properties of the
corresponding arm. This reduces the n-dimensional problem to an one-dimen-
sional problem. This index policy greatly simplifies the search for the opti-
mal policy in various complex decision environments (see Berninghaus et al.
(1987), Banks and Sundaram (1992), Smith and Sorensen (2001) for example).

However, the optimality of the index policy does not carry over to the ban-
dit problem where switching arms involves costs. Banks and Sundaram (1994)
showed that no index policy is optimal when switching between arms incurs
costs. This survey will first discuss the properties of the bandit problem that
make the Gittins index policy optimal, and show how these properties break
down upon the introduction of costs on switching arms. Having established
the failure of the simple index policy, the survey focus on the recent efforts
to overcome the difficulty of finding the optimal policy in the bandit prob-
lem in the presence of switching costs: characterization of the optimal policy,
the exact derivation of the optimal policy in the restricted environments, and
lastly the approximation of optimal policy.? This survey will also discuss the
scope for the further expansions of the three approaches.

The paper is organized as follows. In the next section, some important
applications of the bandit framework are briefly surveyed. In Section 3, the
bandit framework is formalized. In Section 4, the optimality of the Gittins
index for the bandit problem without switching costs is shown, and its inop-
timality in the presence of switching cost is explained. In Section 5, the recent
developments in the bandit problem in the presence of switching costs are sur-
veyed. Section 6 concludes with a brief summary.

1 Various applications of the bandit framework are discussed in Section 2.

2 A comprehensive survey on the multi-armed bandit problem can be found at Basu et al.
(1990).
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2 APPLICATIONS

In the fluctuating economy with incomplete information, resources constantly
move, seeking out their best use. In response to this ubiquitous phenomena,
the bandit framework has been widely accepted as the basic framework of
analysis. In this section, I survey the application of the bandit model in the
following areas: job search, industrial policy, optimal search, experiment, and
game theory.

2.1 Job Search and Labor Mobility

The bandit framework has been applied to explain job search and labor
mobility by Johnson (1978), Miller (1984), Viscusi (1980), MacDonald (1980),
Waldman (1984), Jovanovic (1984), and Kennan and Walker (2003). For
example, McCall and McCall (1987) applied the bandit problem to explain
the migration behavior combined with job search among a set of cities,
workers can observe the prevailing wage and match values only by actu-
ally moving to the city. This problem of “search-and-migrate” for worker
is simply the multi-armed bandit problem with an unknown distribution of
payoffs.

Moreover, the multi-armed bandit framework with a sample distribution
of pay-offs for each arm* is identical to Jovanovic’s (1979) mismatch theory.
According to the theory, the productivity of the worker is match-specific. The
worker faces an infinite number of identical potential employers a priori. Both
firms and worker start with the same belief on the match quality, which is
updated as the worker is employed on the job and information is obtained on
the quality of match. In other words, the hypothesis for why a worker moves
from one job to another is that accumulation of experience is accompanied
by a sorting process in which employers and workers learn which skilled job
each worker can do best. As they learn it, the worker is assigned to occupa-
tions where his kind of ability is needed. This is the model of accumulation of
information about a worker’s innate trait.> Casting this into the bandit frame-
work, firms are the arms of the bandit, and the productivity of a match is the
“true” distribution of payoffs from the arm. Therefore the optimization prob-
lem facing the worker is precisely a bandit problem.

3 The bandit framework has been applied to various problem in the scheduling problems.
I will discuss some of related papers later in this paper, and so skip their discussion in this
section.

4 See Section 3.2 for its formulation.

5 The bandit models of job search imply that worker with higher innate ability moves toward
more complex and high-paying job. This hypothesis is empirically supported by studies of Wilk
and Sackett (1995), Wilk et al. (1995), and Murnane et al. (1995).
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2.2 Industrial Policy

The bandit problem is also applied to explain the industrial policy of govern-
ment. Klimenko (2003) examined the problem faced by government trying to
allocate country’s the limited capacity among industries based on the uncer-
tain information on foreign technologies. There is a finite set of competitive
industries who try to import foreign technologies. There is uncertainty over
the match quality between labor in this country and imported technology.
Therefore for the policy-maker, the relevant state variable is the posterior dis-
tribution of the probability of good match between a foreign technology and
domestic labor. Government can choose a finite number of firms to license to
use foreign technology. This is the problem of industry targeting policy faced
by many countries in the real world. The objective of the government is to
maximize the overall welfare by intervening the entry of new firms with for-
eign technology. Casting the above problem into the bandit problem, the state
is represented by the posterior distribution on match quality, and the allo-
cation of the license to domestic firms is equivalent to choosing arms with
uncertain payoffs. Since the government can allocate licences to more than
one firm at a time, it is the multi-armed bandit problem with multiple plays
(See Pandelis and Teneketzis (1995)).

2.3 Optimal Search

The bandit problem has been applied to the problem of optimal search
(Weitzman (1979), Smith (1995)). Weitzman (1979) considered the model of
searching for the best alternative. In the problem called Pandora’s box, the
agent selects a box to open at a time. The payoff from a box is probabi-
listically distributed. It costs agent each time he opens a box. If the agent
decides to stop searching, he will get the maximum payoff that he collected
so far. The Pandora’s problem is a classic multi-armed bandit problem with
unknown payoffs where each arm represents a box with an unknown distri-
bution of payoffs.

The trade-off between exploitation and exploration is a classic consider-
ation in the problem of searching for natural resources, such as oil and gas
(see Benkherouf and Bather (1988), Benkherouf (1990), Benkherouf et al.
(1992)). For example, an oil company has a finite set of areas for drill, and
each area has an unknown amount of oil. The company may or may not
explore more than one area at a time. The value of each oil field is given and
drilling an oil field is costly for the company. The probability of finding a new
oil field is distributed as some finite distribution. If an area is drilled and an
oil field is not found, then the expected probability of finding a new oil field
from this area is updated in a Bayesian fashion. The objective of the com-
pany is to find the strategy that maximizes the total expected payoffs. This
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problem is the multi-armed bandit problem where oil fields represent arms
with an unknown distribution of payoffs.

2.4 Experiment and Learning

Since the bandit problem provides the natural setting for studying the
trade-off between exploitation and exploration, it has been widely applied
to the problem of optimal experiments. The bandit problem was first intro-
duced to model experiment and learning by Rothschild (1974). He modeled
the market experiment problem faced by a seller who chooses in each period
from finitely many prices with unknown expected returns. This model is noth-
ing but the multi-armed bandit problem with unknown payoffs for arms.
McLennan (1984) extended the model of Rothschild (1974) by allowing the
seller to choose from a continuum of prices. Azoulay-Schwartz et al. (2003)
and Krahmer (2003) examined the problem of experiment from the buyer’s
point of view where buyer can not observe the quality of products. Cowan
(1991) studied the problem of experiment on adapting a technology when
the true merit of the technology is unknown. Other models in the literature
include Brezzi and Lai (2002), Easley and Kiefer (1988), Aghion et al. (1991),
Keller and Rady (1999) and Rustichini and Wolinsky (1995). The key result of
the above literature is that learning can be incomplete in a sense that there is
a positive probability that the agent might settle on a suboptimal arm. This
“lock-in” to an arm, regardless of the true property of the arm, is well known
in the bandit literature. The intuition is as follows. If an arm, even if it is a
bad one, produces a good result at each time it is played, it can advance suffi-
ciently enough such that a good arm can not catch up.

2.5 Game Theory

Schlag (1998) studied decision of agents in a finite population who repeatedly
choose among actions yielding uncertain payoffs. At each time, each agent
is equally likely to be replaced by a new agent. The newly-born agent faces
the same problem as his predecessor. On entry, each agent observes the pre-
vious choice and its payoff for his predecessor and one other agent in the
population. Each agent must commit to a behavioral rule before entering the
population. Clearly, the basic problem for each agent is a multi-armed bandit
problem of arms with uncertain payoffs.®

6 Schlag (2003) studied in a similar setting to Schlag (1998) the problem where agents have
a rule of minimizing regret where regret is defined as the difference between the maximal dis-
counted expected payoff obtainable and the discounted expected payoff achieved by this rule.
This model extended results obtained by Berry and Fristedt (1985) for Bernoulli two-armed
bandits so that the rule of minimizing regret attains the minimax regret if and only if it is
an equilibrium strategy of the agent in the zero-sum game where nature maximizes, and the
agent minimizes regret.
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The bandit framework is also applied to explain the behavior of individ-
uals in ultimatum games.” Brenner and Vriend (2003) designed and imple-
mented an experiment where individuals are matched to play the ultimatum
game with a population of players whose behavior is dictated by some com-
puterized algorithm. Players will offer to split a pie with his computer player.
If the offer is accepted, he will get his share, and gain nothing otherwise.
A player is told that (1) if the computer player accepts offer x, he will also
accept any offer higher than x, and (2) if offer x is rejected by the computer
player, the computer player will also reject any offer less than x. This implies
that a population of computerized players is characterized by a probability
density function that an offer will be accepted. Hence the problem faced by
each player can be translated to the multi-armed bandit where player selects
from a finite set of offers and the payoff of offers are unknown a priori. They
showed that the predicted behavior of the model that uses the simple policy of
the Gittins index approximates the actual experimental behavior data.® Hence
they empirically showed that the Gittins index policy” is a rule of thumb in
the experimental ultimatum games.

3 BANDIT FRAMEWORK

In the literature on bandit problems, there are two types of bandit mod-
els separate from each other by the degree of information agent possesses.
In one type of models, the agent has complete knowledge on the system of
the bandit problem. He knows the underlying distribution of payoffs and all
other relevant statistics of the problem he faces. In the other type of models,
the agent’s knowledge is incomplete. This imperfection may arise from uncer-
tainty over the underlying parameters of the payoff distribution, types of the
arms, etc. The agent with incomplete information may learn the unknown
part of the system by observing the consequence of his actions in order to
improve the performance of his strategy in the future. In this section, I for-
mulate the bandit problem under both complete and incomplete information.

3.1 Complete Information Case

Suppose that the bandit process consists of a set N of arms and |N|=n is
the number of arms. The discrete-time bandit problem is can be formulated as
follows, following Frostig and Weiss (1999).10 The state of the bandit system

7 For the literature on ultimatum games, see Gale et al. (1995) and Thaler (1988).

8 Theoretically, the optimal solution for player is not the Gittins index policy since offers are
not independent, that is, the probability of acceptance of the offer is weakly increasing in the
size of the offer.

9 See Section 4 for the formulation of the Gittins index.

10 I do not present the formulation of the continuous-time bandit problem. Interested read-
ers may consult Karatzas (1984) and El Karoui and Karatzas (1997).
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at time ¢ is given by S, =(S/, ..., SH. S} is the state of arm i at time ¢, and
Si € E! where E' is a countable state space. At each time ¢, each agent plays
a subset N; C N of arms and their payoffs are observed. Then the states of
those arms will change according to some transition function and all other
arms will remain frozen. More precisely, if arm k is chosen at time ¢ and
sk =i, the payoff is equal to R,(i)= R¥(i) for k € N;. Assume that |R¥(i)| < B
uniformly for all i and k. The state of arm & will move from i to j accord-
ing to p(i, j):P(s,k+1=j|stk=i). For all other arms, s§+1 =stl for all / #£k and
they yield no payoffs. Let H, denote the set of all possible histories up to time
t. The strategy m of the agent specifies the subsets of arms to be played at
time 7 given H;. Formally, = is a sequence of measurable maps {m;};2
such that w; : H, — R. Clearly, N; depends on 7; and thus we denote it as
N; (r;). The objective of agent is to choose a policy 7 to maximize the infinite
stream of B-discounted payoffs as follows:

o0
max  Ey, Zﬂ’ Z RNSy =i subject to | N; ()| <7,
Nl =0 keN,(m)
(1)
where i= (i1, i»,...,iy) and n is the maximum number of arms that can be

chosen at a time. If 7 =1, the above problem is reduced to the bandit frame-
work studied by Gittins (1979) and the objective function can be simply writ-
ten as follows:

o0

Ex, {Zﬁ’R,|SO=i} :
t=0

The argument in Whittle (1982) and Ross (1983) establishes the existence of a

continuous function V(.):S— R.V(.) represents the value of the bandit prob-

lem when the states of arms are represented by S. The Bellman equation can

be written as follows:

V (i) =max Rk(i>+ﬁ2pk(i, DV T, ©)
J

where j=(i1,i2, ..., ik—1» J» lktls---sin)-

The bandit model can incorporate a “retirement option” as in Whittle
(1980). Let M > 0 denote the retirement option: if agent chooses to retire, he
will be given M and the game ends. Extending Eq. (2), the Bellman equation
with retirement option can be written as follows:

V(. M) =max R"(i)+ﬁZp"(i,j)V(j,M),M . ©)
J
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As shown by Bellman (1957), the multi-armed bandit problem defined in
(1)-(3) is a dynamic programming problem with bounded payoffs, countable
state space, a finite action space, and discounted infinite horizon objectives.
As the theory of dynamic programming predicts, it has an optimal solu-
tion given by a stationary policy. Also, if the transition of states is Markov
decision process, the problem can be solved by linear programming (Manne
(1960), Derman (1962)).

3.2 Incomplete Information Case

When the agent has uncertainty over the system of the bandit process, the
agent faces the inherent trade-off between exploitation and exploration. Myo-
pic objective dictates that the agent exploit the action that maximizes the
immediate payoffs. On the other hand, clearing the uncertainty over the sys-
tem can be valuable since it can help the agent to make a better decision in
the future. However, for agent to learn about the unknown in the situation
he is in, the agent may need to explore actions that may not be myopically
best. When exploitation and exploration conflict, agent needs to choose the
sequence of actions that maximizes the stream of payoff over the horizon.
In other words, agent must take into account the quality of information the
action reveals as well as the immediate payoff from it.

Uncertainty can arise from various sources. I follow the modelling strat-
egy of Banks and Sundaram (1992) and assume that the underlying types of
arms are unknown. Arm i is one of a finite number K (i) of types. The true
type of arm is unknown a priori. If the true type of arm i is k€{l,..., K@)},
the expected payoff is R* according to the density g'*(.) that is, R¥¥ =
f rg™*(r)(dr). Without loss of generality, I assume that R¥ decreases in k and
is bounded. The agent has a prior belief pi € AK@~lon the true type distribu-
tion of arm i, with p6 being the initial prior.!! Let g/(.) denote the expected
density of payoffs from the prior distribution of pi; gi () =Y, p¥g'*(.), where
pi* is the k-th element of p!. Then the expected payoff from playing arm
i at time ¢ is simply Ri(p}) =Y, pi¥R'*. The agent can choose one arm
at a time.'2 Let r; denote the realized payoff from arm i. Then the poster-
ior belief for the arm i is updated, and by the independence of bandits, the
posterior belief for all other arms j e N\{i} remain unchanged. More specifi-
cally, p/, ;= p/ for all jeN\{i} and p!_, is updated according to the follow-
ing Bayes map: 7/, (p}. RI(p})): AKC=D x R— AKG=D_ The map is defined
by 7/ (pi. R (ph) = (/X (pi, RI(PD)k=1....k (). Where /% (pl, Ri(p}) =
PRIk (ply/ Z;{:(ll) pr/ (pl). Similarly to the complete information case, the
11 AK®O=1is the positive unit simplex in R”.

12 See Pandelis and Teneketzis (1995) and Agrawal et al. (1990) for the case where agent is
allowed to choose multiple arms at a time.
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argument by Whittle (1982) and Ross (1983) establishes the existence of a
continuous function V(., M): A*"! - R for each M. Hence V(p, M) defines
the value of the bandit system to the agent who has a prior belief p and
retirement option M.!3 The Bellman equation can be written as follows:

vunM>=nmx{M;Rw)+ﬂ/34nwnmaagowr}

4 OPTIMAL POLICY AND THE GITTINS INDEX
4.1 No Switching Costs

In this section, I will develop the optimal policy for the bandit problem
defined in Eq. (2). The major difficulty in obtaining the optimal policy is
that the number of states becomes large very quickly as the number of arms
increases: if each arm has Q possible states, the bandit problem has Q" states.
I show that the index policy developed by Gittins (1979) is optimal.'* In the
second half of this section, I will present proofs for the optimality of the
Gittins index policy.

Gittins and Jones (1974) and Gittins (1979) provided a tractable solution
for the optimal policy in the bandit problem of Eq. (2). They developed an
index, now called the Gittins index, for each arm. In the discrete time model
where agent has complete information and 7 =1, the index for arm k is
defined as follows:!?

o—1
E{ b ﬁ’Rt|S’(§=i}

t=0

: “)

vk(i) =sup vk(i, o) =sup
o>0 >0

o—1
E{Zﬁ%=%
=0

where Sg is the k-th element of the vector Sy. From Eq. (4), the Gittins index
is interpreted as the maximal rate of return. The key element for the optimal-
ity of the Gittins index is that the supremum of (4) is achieved and in fact it
is achieved by the following stopping time:

tF =min{r : 0% (S;) < vk (i)} (5)

13 V(,M) can be obtained as the unique fixed point of the contraction mapping 7 :
c(AK-1y c(AX—1y where C(AKX~1) is the space of all real valued continuous functions on
AK=1 See Puterman (1994).

14 The index policy when the agent is allowed to choose more than one arm is discussed in
Bergemann and Valimiki (2001). See Section 5.2.

15 Interested readers may consult Karatzas (1984) and El Karoui and Karatzas (1997) for
the definition of the Gittins index in continuous time.
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According to the Gittins index policy, it is optimal to choose the arm with the
highest value of index. What makes the problem tractable by the Gittins index
is that the computation of the index for an arm only depends the properties
of the arm. This reduces the n-dimensional problem to an one-dimensional
problem. Gittins (1989) also suggested computational methods to compute
the index for the normal, Bernoulli and exponential distribution of payoffs.
The methods involve approximating the infinite horizon problem by a finite
horizon problem, using backward induction.

Theorem 1. (Gittins (1979)) There exists functions, G,(S;),n=1,2,...,n, such
that for any state S;, the policy ©* will activate an arm n which satisfies
Gn(S); =maxi<u<n G (S;) is optimal. The function G(.) is calculated from
the dynamics of arm n alone.

The Gittins index in the incomplete information case can be similarly
defined as (4). Let z% the number of times that arm k has been played by
time ¢. Let pi‘k, be the posterior after arm k was played zK times which
yielded the sequence of payoffs of R, R’z‘ e Ri‘k,. Then the Gittins index for
arm k can be defined as follows:

o—1
fE{Zﬁ’Rﬁ‘(pf)lp{;:pfk,}g(r)dr

t=0

(6)

wk(i) =supwk(i, o) =sup

o>0 o>0 o1 ki k k
/E > BYps =1k { g(rdr

t=0

In the rest of this section, I discuss the proofs for the optimality of the Gittins
index policy. The purpose of this presentation is to clarify the underlying
properties of the bandit problem that make such a simple policy optimal.
Frostig and Weiss (1999) surveyed four proofs for the optimality of the
Gittins index in the literature: Gittins’ original proof of interchange argument
(Gittins (1979)), Weber’s fair charge argument (Weber (1992)), Whittle’s dual
Lagrangian approach (Whittle (1980)), and Bertsimas and Nino-Mora’s /in-
ear programming approach of achievable region and generalized conservation
laws (Bertsimas and Nino-Mora (1996)). Although these proofs are different
in the details, they share a common strategy: the proof starts with a study
of a single-armed bandit process, and the optimal policy is solved for in this
restricted case. Then some properties of this solution are used to character-
ize the solution of the multi-armed bandit problem. Hence the bottom line of
this methodology is that the system of the bandit process is decomposable, in
the sense that comparison of all available arms can be based on the set of the
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“representative values” of arms, each of which is computed in isolation from
all other arms. This in turn implies that the decomposability of arms will fail
if independence of arms breaks down.

I will discuss two of the four independent methods: the proof by Gittins
(1979) and Whittle (1980).1¢ Gittins® original proof of interchange argument
exploits the trade-off between the “size” of the payoff and “length” of time it
takes to achieve the payoff. In other words, it is certainly desirable to receive
a higher payoff. However, due to discounting, it is also important to receive
it as quickly as possible. The numerator of (4) captures the maximum size of
the payoff, while the denominator discounts this payoff by the length of time
it takes to achieve this payoff. The Gittins index achieves the optimal bal-
ance between the size and the time delay of the stream of payoffs. The proof
exploits the fact that if it is optimal to choose an arm, then it is optimal to
continue with the arm until its stopping time defined in (5). The reason is as
follow. Given the construction in (4), as arm i is played more and more, the
value of its index increases until the stopping time t; defined in (5). Therefore
once the arm with the highest index is chosen, it is optimal to play it until its
stopping time.!”

Whittle (1980) proved the optimality of the index policy by introducing
the retirement option. The Bellman equation is given in Eq. (3). The proof
exploits the decomposability property of arms as follows. First, he consid-
ered the problem of arm i with a retirement option in isolation. He showed
that it is optimal to continue to play arm i if M (i) > M where M (i) =inf{M :
V (i, M)=M]}, and retire otherwise. Then consider the case of n-armed bandit
problem. If this problem were decomposable, the following policy should be
optimal: retire if M(i;) <M, and play arm j if max; M(ix)=M(i;)> M. He
showed that this is in fact optimal.

4.2 Switching Costs

The original bandit problem solved by Gittins (1979) is based on the assump-
tion that switching between arms at any time is costless. However, as Bank
and Sundaram (1994) argued, it is difficult to imagine a relevant economic
problem where the agent may costlessly switch between alternatives. To name
a few example, a worker who switches jobs must pay non-negligible costs.'®

16 Proof by Weber (1992) can be translated into Whittle (1980)’s proof by setting fair charge
y equal to (1-B8)M.

17 This property also holds when switching arms is costly. I will discuss this in detail in
Asawa and Teneketzis (1996) in Section 5.

18 Workers switching jobs entail a variety of costs: costs of learning new skills needed at
the new job, or having their children adapt at a new school when the new job requires that
the family relocates geographically. Mobility costs are key features of a variety of models that
underpin empirical analyses of the joint determination of wages and labor mobility (e.g. Black
and Loewenstein (1991), Barron et al. (1993), Kuhn (1993)).
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Switching jobs from one machine to another incurs a variety of setup costs
(Duenyas and Van Oyen (1996), Karaesmen and Gupta (1997), Reiman and
Wein (1998), Van Oyen and Pichitlamken (1999)) and switching costs (Van
Oyen and Teneketzis (1993), Koole (1997), Van Oyen et al. (1992), Kolonko
and Benzing (1985)). Unfortunately, Bank and Sundaram (1994) showed that
in the presence of switching costs it is not possible to define an index for
each arm such that the resulting strategy produces the maximized payoffs.
Below, two different arguments for the inoptimality of the index policy in
the presence of switching costs are discussed. The purpose of this discussion
is to clarify how the decomposability property of arms breaks down upon
the introduction of switching costs, and how much complication the failure
of the decomposability property would generate in computing the optimal
policy.

The bandit problem in the presence of switching costs can be formu-
lated as follows. First, Banks and Sundaram (1994) argued that any ban-
dit problem where there are both costs of switching “away from” and
“to” an arm is equivalent to another bandit problem where there is only
the cost of switching to. Hence for simplicity, assume that there is only
cost of switching to. Let V(i,#) denote the value function when the vec-
tor of states is i and arm h € N is the immediately-played arm. The Bell-
man equation when switching is costly can be obtained from (2) as fol-
lows:

Vi m=max [R*0) = Luzn € +8 Y p G DV K]

where j= (1,02, .-y ik—1s Js lft1>---»in)s Ck is cost of switching to arm k, and
1, is equal to one iff ¢ holds and zero otherwise.

The inoptimality of any index policy can be understood from two differ-
ent arguments. First, as Bank and Sundaram (1994), we can approach it by
considering the properties that any optimal index policy, if there is any, must
satisfy. If there is any possibility of switching back to the arm currently in use
after abandoning it, then the index on the current arm must be increasing in
the cost of switching to it. This is because a higher cost of switching back
to the current arm makes the decision-maker more reluctant to leave the cur-
rent arm. On the other hand, if switching back is a zero-probability event,
the index must be independent of the cost of switching back to it. These
two necessary conditions for optimality contradict each other. This implies
that arms are not independent in the sense that the value of each arm is
affected by the duration of plays of alternative arms, which is determined by
the expected performance of the alternative arms. The independence between
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arms is a necessary condition for the decomposability property of arms.'?
Bank and Sundaram (1994) showed by a numerical example that these two
requirements for the optimality of the index policy are not mutually consis-
tent. Later, Banks (2003) presented the nonexistence proof by explicitly show-
ing that any index must be increasing and decreasing in switching costs at the
same time.

Second, we can approach the inoptimality of index policy by translating
the bandit problem in the presence of switching costs into the restless ban-
dit problem. Note that in the bandit problem in the presence of switching
costs, the state of the arm just abandoned changes its state from “being
immediately-played arm” to “any other arm that requires switching costs if
it is to be played.”?” In other words, the state of the arm that agent switches
away from changes, although it is not played. Hence the bandit problem in
the presence of switching costs can be translated into the restless bandit prob-
lem, introduced by Whittle (1988). The bandit problem is called restless if
chosen arms as well as some or all of the unchosen arms change their states.
The value function when the vector of states is i and retirement option is M
in the restless bandit problem can be written as follows:

VG, My=max{ R"()+p ) Y p"G HV G M), M, ()
keN j

where j= (j1, j2, ..., jn). Whittle (1988) was not able to fully characterize the
optimal policy in the restless bandit problem.2! In fact, the restless bandit

19 The importance of independence between arms is well illustrated by Keller and Odale
(2003). They considered a branching process, where the system of bandit problem is represented
as a tree. Each node in tree represents an arm that can potentially be selected if its parent arm
is selected before. A tree that starts from a node is a subtree, similar to subgame in extended
games. The key feature of the model is that selection of an arm in a subtree not only yields
an immediate payoff but also may deliver information on the untried arms in other subtrees.
Keller and Oldale (2003) showed that the Gittins index policy remains optimal if the signal
from an arm in a subtree is only informative about the payoffs of its descendent nodes in
the subtree. Therefore the optimality of the Gittins index policy hinges on the independence

of information structure.
20 This assumption of repeated switching cost is relaxed in Benkherouf et al. (1992) where

switching cost is paid only at the first time an arm is played. The relaxation restores the opti-
mality of the Gittins index policy in the presence of switching costs. See Section 5.2.

21  Whittle (1988) defined an index for each arm in a state as the least value of the subsidy
for which it could be optimal to let the arm rest in the state. Weber and Weiss (1990) estab-
lished the asymptotic optimality of Whittle’s index when the differential equation describing
the fluid approximation to the index policy has a globally stable equilibrium point. A different
priority by index heuristic, obtained from Whittles linear programming relaxation, was devel-
oped and tested computationally by Bertsimas and Nino-Mora (2000). A polyhedral frame-
work for analysis and computation of the Whittle index and its extensions were developed in
Nino-Mora (2001).
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problem belongs to the class of AP-complete problems, which is character-
ized by the extreme computational load on finding the optimal policy. There-
fore the decomposability property of arms and subsequent the existence of
the simple index policy for the bandit problem in the presence of switch-
ing costs would contradict the difficulty of such N'P-complete problems, for
which numerical solutions are usually obtained by enumerative methods such
as the branch-and-bound method (Land and Doig (1960)).

5 RECENT DEVELOPMENTS

The previous section showed that the easy-to-implement tool of the index
policy is not necessarily optimal in the presence of switching costs. In this sec-
tion, I survey the recent efforts to overcome the difficulty of finding the opti-
mal policy in the bandit problem with switching costs in three different ways;
characterization of the optimal policy, exact derivation of the optimal policy
in the restricted environments, and finally approximation of optimal policy.
The advantages and disadvantages of the above approaches will be discussed.

5.1 Characterization of the Optimal Policy

When the exact solution of the given problem is too complex and com-
putationally impossible, a modest approach would be to characterize the
optimal policy as much as possible. This line of researches attempts to pro-
vide knowledge on the property of optimal policies as a guide for search for
the optimal policy. Among such attempts, I present the work of Asawa and
Teneketzis (1996) and Van Oyen and Pichitlamken (1999).

5.1.1 Asawa and Teneketzis (1996 )

Asawa and Teneketzis (1996) attempted to determine optimal switching times.
They first defined the Gittins index in presence of switching cost as follows.
Suppose each arm is a deterministic sequence. Let Rli denote the payoff from
arm i that has been used for / times. The “switching cost index” for the arm
k that is not the immediately-played arm is defined as follows:

o—1
;) IBtRerl -C
f)k(l)=su}3 f)k(l,a):supot_?, (®)
o> o>
> B
=0

where C denotes the switching cost. Let 7, similar to the stopping time
defined in (5), denote the stopping time that achieves the supremum in
(8). Hence the switching cost index incorporates the cost of switching in
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computing the value of the corresponding arm. The Gittins index for the
immediately-played arm is defined as in (4).22

Asawa and Teneketzis (1996) showed that if it is optimal to play an arm
at a certain time, then it is optimal to continue with it until its stopping time
when the appropriate index is achieved: 7 in (5) if the arm is the immediately-
played arm and 7 if it is newly-selected arm. This implies that decision about
optimal choice of arms needs to be made only at times when the appropriate
index of the arm is achieved. The intuition for this result can be discerned as
follows. As mentioned in the original proof of the Gittins index, the value of
index increases once it is selected and played more and more until its stopping
time. Therefore it becomes more and more attractive to stay with the current
arm as it is played given that all other arms remain frozen and yield no pay-
offs.

5.1.2 Van Oyen and Pichitlamken (1999)

Van Oyen and Pichitlamken (1999) drew upon the results from Asawa and
Teneketzis (1996) and incorporated setup times for switching arms. They con-
sidered the problem of allocating a single server to a set of jobs from N fami-
lies. A job in a family is designated with an instantaneous holding cost ¢, and
mean processing time u;l. There is no arrival of new jobs. Switching jobs
between families incurs the random setup times D, but switching between
jobs within a family is costless. The objective is to minimize the expected
costs of serving all the jobs. The special case where there is only one job
in a family is completely characterized by Santos and Magazine (1985) in a
deterministic model, and Van Oyen et al. (1992) in a stochastic model. Let
xp denote the number of identical jobs in family n. The index for family n is
equal to

_ Catn (g
n=T— >
Xnltn '+ E(Dy)

and it is optimal to select the arm with the highest value of yx,. The index
given in (9) is nothing but the “cu index” multiplied by the fraction of time
over which work is performed. The corresponding cu-rule gives priority to
the project with the highest delay or holding costs ¢; over the expected pro-
cessing time of ui_l. Then it is optimal to select the project with the highest
ckuk_l value. 23

The key results of Van Oyen and Pichitlamken (1999) are as follows. First
it is shown that an exhaustive policy that serves all identical jobs consecu-
tively is optimal (Lemma 1). Second, within a family, it is optimal to pro-
cess job according to non increasing value of cu (Theorem 2). This is directly

)

22 Asawa and Teneketzis (1996) also discussed the stochastic bandit problem.
23 The optimality of the cu-rule is shown by Smith (1956) for deterministic case, and Cox
and Smith (1961) for stochastic case.
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analogous to the optimality of the Gittins index policy within a family, and it
is proven by the interchange argument, originated by Gittins (1979). Finally,
they defined the switching cost index and associated stopping time, similar to
the switching cost index in (8), and showed that if it is optimal to serve a
job, then it is optimal to continue until its stopping time (Theorem 3). This
is qualitatively identical to the above result of Asawa and Teneketzis (1996).

5.2 Exact Solution in Restricted Environments

Many researches in the literature have attempted to find the exact solu-
tion of the optimal policy, but at the cost of various simplifying assump-
tions. Although the exact solution of the optimal policy is the merit of this
approach, it often comes at the cost of limiting the scope for the further
expansion. The assumptions that have been used to get the exact optimal pol-
icy include stationary distribution of arms (Bergemann and Valimaki (2001)),
monotonic sequence of payoffs (Dusonchet and Hongler (2003)), first-time
only switching costs (Benkherouf et al. (1992)), time-invariant payoffs (Kav-
adias and Loch (2000)), and two symmetric arms (Jun (2001)).

5.2.1 Bergemann and Vilimdki (2001)

Given arms with an unknown distribution of payoffs, Bergemann and
Valimaki (2001) examined the bandit problem in the presence of switch-
ing costs where more than one arm can be chosen at a time. Bergemann
and Valimaki (2001) extended the Gittins index to incorporate simultaneous
choice of n* actions where n* < n. However, selecting the highest Gittins
index n* arms is not necessarily optimal.?* They constructed the optimal
selection policy as follows. First, let wg denote the Gittins index at time O.
Let Nj(mo)={1,2,...,n"} denote the set of selected arms at time 0 under the
policy 7o and it is associated with

Li(my) ={i € N§ (mo) [’ > wo}. (10)
Then the pair of the sequence {N; (), L} +1(”I+1)}?io 1S
—1 t

Ni () =Liman U ™+ 1= [Li@p]. ... ¢+ Dn* =Y L3 ¢
j=1 j=1

(11)

24 This policy is, however, asymptotically optimal and turnpike optimal. The asymptotic opti-
mality was proven by Ishikida and Varaiya (1994). The approach developed by Weiss (1995)
for optimal scheduling of stochastic jobs on parallel server problem can be applied to prove
turnpike optimality, which requires the fraction of decision times during which the prescrip-
tion of the index policy contravenes the prescriptions of the optimal policy to be zero in the
long-run.
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In other words, the sequence of N/ (m;) operates all the arms whose Gittins
indices are more than the common index wq of the untried arms, and leaves
the arms whose indices are smaller than the value of common index. They
call the sequence {N; (m;)}72, the Gittins index n*-policy.

For the n*-policy defined in (10) and (11) to be optimal, the stationarity
of distribution of available arms is assumed, namely the unlimited supply of
untried arms. The intuition is as follows. If the distribution of arms is finite,
depending on the past choices of arms, the distribution will change. Therefore
the choice of arms affects the distribution of arms, and the distribution in
turn affects the choice of arms. This interdependence between choice of arms
and distribution of arms makes any index policy inoptimal. However, if there
are unlimited supply of untried arms, the arm that is abandoned once will
never be employed again. This stationarity assumption on the distribution of
arms guarantees the independence of arms, which is condition we need to
sustain the decomposability of the bandit problem. However, this stationarity
strategy is not applicable to finite distributions where it is possible to recall
once-abandoned arms. For example, it is not applicable to project develop-
ment where a finite number of projects are pursued nor to the scheduling
problem with finite queues. However, this restriction can be justified in job
search framework where workers face a infinite number of potential employ-
ers (Mortensen (1988)).

5.2.2 Dusonchet and Hongler (2003)

Dusonchet and Hongler (2003) explicitly derived optimal switching thresh-
olds in a continuous-time two-armed bandit problem. The key assumption
to get the explicit solution is that the payoff is deterministic and mono-
tonically decreases over time. The monotonically-decreasing payoffs make
computation of expected payoffs very easy. Therefore the optimal switch-
ing times can be explicitly computed. The framework can be applied to a
waning industry whose profitability decreases over time. However, the mono-
tonically-decreasing payoff is a strong assumption; it is not applicable to
the more general environment where payoffs are free to move upward and
downward.

5.2.3 Benkherouf et al. (1994)

Benkherouf et al. (1994) studied the special case where switching cost is paid
only at the first time the arm is played. They showed that the Gittins index
is optimal (Theorem 2 of Benkherouf et al. (1994)). The intuition is as fol-
lows. As Bank and Sundaram (1994) pointed out, if there is any possibility
of switching back to the arm currently in use after abandoning it, then the
index on the current arm must be increasing in the cost of switching to it.
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Since the concern about switching cost disappears once an arm is played, the
index on the current arm does not need to increase in the cost of switching
to it. Therefore this does not contradict the fact that the index on the current
arm should also decrease in switching costs (Banks (2003)).

Although the one-time switching cost successfully detours the complex
problem of considering potential switching costs when arms can be recalled,
the model does not really deal with the problem where it is possible to recall
those abandoned arms. For instance, if we interpret switching cost as a mov-
ing cost, it is incurred whenever moving happens. The model, therefore, is
more suitable to the situation where switching cost is translated into (one-
time) suck costs.

5.2.4 Kavadias and Loch (2000)

Kavadias and Loch (2000) applied the bandit framework to model the new
product development problem. There are several projects, each of which must
go through a fixed number of development stages to be a final product.?’
Each stage has a certain development cost. The payoff of a project only
occurs at the completion of developing the project. The objective of the firm
is to maximize the expected payoffs from project development by choosing
the right sequence of projects. This can be modeled as a multi-armed bandit
problem where each project is represented by an arm of the bandit.

More specifically, there is a set of projects n={1,2,...,n}, time is discrete,
and #; denotes the number of periods remaining to complete the development
of project k. Let x; denote the stage of development of project k. If pro-
ject k is engaged, the cost at each stage is cx(xx, #x) and the stage moves to
yx according to the transition probability p(xx, yx) and the remaining time
to completion becomes #; — 1. The payoff at the end of completing a project
depends on the state of the project at the time of completion, but it is inde-
pendent of the time it takes to complete the project. Let i (x;) denote the
payoff received at the time of completion.

There is a cost of switching when the working project is changed; project
k has switching cost s;(u) if it is different from the immediate predeces-
sor u,k#u. Let V(x,t, M,u) denote the value function when the current
states and remaining times until completion of each project are represented
by the vectors x and t, respectively, M denote retirement value, and u
the immediately-processed project. The Bellman equation can be written as
follows:

25 When firms attempt to develop a new product, they may pursue several potential new
products simultaneously. Moreover, given the limited amount of resources, such as equipment,
human capital and financial resources, how to allocate these resources to maximize the profit
from successful development of new product is the central question for managers (Adler et al.
(1995), Loch and Kavadias (2002)).
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V(x,t, M, u)=max | — cr(xk, tr) — si(u)
keN

+B Y pk, yOVi(X Y, M k), M},

vk
where x' = (X1, X2+« vy Xk—1s Vk» Xk+1, - - -, Xp) and t=0.t,... -1, 1 — 1,
tk+1,...,tn) and
V(x,t, M, u)=mi(xp),
where ' =(t1,12, ..., k1,0, fks 1, - - - » n)-

Although there is a cost of switching projects, Kavadias and Loch (2000)
were able to maintain the decomposability property of the Gittins index by
the following two assumptions; (1) switching cost does not depend on which
project is the immediate predecessor, and (2) a project’s value is not affected
by the delay caused by waiting for another project. The first assumption can
be simply met by constant switching cost, which itself is not sufficient to sus-
tain the optimality of the index policy. Especially, if the second assumption
fails, switching cost affects the duration of plays of arms and so delays the
completion of projects, and this will in turn affect the project’s value. Then
the argument by Bank and Sundaram (1994) can be applied and the index
policy fails to achieve optimality. Consequently, the decomposability property
of projects primarily hinges on the time-invariant return of a project upon its
completion.

However, the time-invariant payoff is a serious drawback of the model
when it is applied to the problem where timing of an event is critical for the
resulting payoff of the event. In many cases, the earlier the timing of com-
pletion of a project and the following entry into the market, the higher its
payoft. This is due to the first-comer advantage from having the opportunity
to erect barriers to entry and discouraging potential rivals from committing
the resources necessary to compete successfully (Lippman and Mamer (1993),
Eswaran (1994), Bergemann and Valimiki (1999), Soberman (1999)).

5.2.5 Jun (2001)

Jun (2001) examined the bandit model where two arms change their states
according to random walk processes, irrespective of choice of actions by
agent. The model setup is as follows. There are two arms a and b and s/ and
sP,t=0,1,2,..., are the states of two arms a and b in R', respectively such
that

' t

a__ a b__ b

sy _an and s, _an,
n=0 n=0
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where x¢ and x,’f,n =0,1,2,..., are independent and identically distributed
random variables taking on values i € R'and —h with probabilities p €[0, 1]
and 1 — p, respectively. The agent chooses 6, € ©® ={a, b} at each period ¢. If
arm i € {a, b} is chosen at time ¢, the payoff is s!. There is a constant switch-
ing cost C such that the (net) payoff at time ¢ is defined as s,g "if 6,=6;_1 and
s C if 6, 4£6,_;.

This problem is a restless bandit problem with random walk processes.?
The argument by Whittle (1982) and Ross (1983) establishes the existence of a
continuous function V(.):S— R; even if payoff is unbounded on the random
walk without ceilings, there exists a number B; and a constant z such that the
expected payoff of arm i at time r — 1 is bounded by B;n* and the value func-
tion thus remains well defined. The Bellman representation can be stated as
follows: for i €{a, b},

vi(sa,sb): max {SQ—I{Q#‘}C-F,BWG}, (12)
6¢efa,b}
where

Wi=p2i (s +h, s’ +h)+ 1 —p)>v'(s*—h,s* —h)
+p(1L—p)'(s®+h, s’ —h)+ p(1 — p)v' (s —h,s® +h),

and v’ (s?, s?) is the value function for the agent when the states of each arm
are s and s” and arm i is the immediately-played arm.

The search for the optimal policy can be simplified by the following argu-
ment. Consider a pair of states of two arms s and s?. Consider another pair
of states s? 41 and s” +1. If we apply whatever the optimal policy of the first
pair of states to both (s¢,s?) and (s¢ 41, s” +1), the expected payoffs from

26 The restless bandit problem, which is introduced by Whittle (1988), has been studied
in various directions (O’Flaherty (1987), Dusonchet and Hongler (2000), Lott and Tenekezis
(2000), Nino-Mora (2000, 2004a, b), Ehsan and Liu (2004)). In particular, the restless bandit
framework has been applied to model the operation of firm which involves in more than one
market. He and Pindyck (1992) considered a multi-output firm whose demands of two markets
evolve simultaneously. Firm must choose between specific capacity with which firm can apply
to a particular market, and flexible capacity which enables the firm to supply to both mar-
kets, but it is more costly. Given that the installation of either type of capacity is irreversible,
the decision problem faced by the firm is equivalent to the derivation of the option value of
the flexibility. He and Pindyck (1992) did not incorporate switching costs between technolo-
gies. Similar investment models where the option value affects the decision of investment of
multi-output firm includes Kulatilaka (1988), Harrison and Van Mieghem (1999), Jung (2003),
and Tuluca and Stalinski (2004). Among them, Kulatilaka (1988) incorporated switching costs
upon switching between modes of production, but he did not derive the optimal switching
policy analytically. Overall, this literature is closely related to this model since not only alter-
natives (whether they are markets or arms) change their states in “restless” fashion, but also
the idea of the option value is used to compute the optimal policy (McDonald and Siegel
(1986), Dixit and Pindyck (1994)).
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the second pair is v/ (s?, s?) +1/(1 — B), and so vi(s® +1,s” +1) > vi(s?, s") +
1/(1—p) for i €{a, b}.

In other words, this “copycat” strategy is low-bounded by I/(1 — B)
because arms are symmetric. Also, if we apply whatever the optimal policy
of the second pair of states to both (s¢,s?) and (s*+1,s” +1), the expected
payoffs from the first pair is v'(s? +1,s? +1) —1/(1 — B), and so vi(s¢,s") >
vi(s®+1,s° +1)—1/(1 — B) for i €{a, b}. Therefore we conclude that v’ (s® +
I,s"+1)—vi(s?, s?)=1/(1 — B), which is constant. This implies that as long
as the payoff differences remain unchanged, the optimal policy must be the
same, and the absolute levels of states are irrelevant to the switching decision.

Therefore, given a constant switching cost, the agent only needs to eval-
uate the payoff difference between the outside and the current arm to decide
whether to switch or not.?” The optimal switching rule is characterized by the
minimum payoff gain, which is defined as the payoff from the outside arm
minus the payoff from the current arm necessary for agent to switch arms
to maximize the infinite stream of the expected payoffs in (12). Jun (2001)
derived the implicit solution of this minimum payoff gain as follows.

Theorem 2. (Jun (2001)) The agent will switch arms if the payoff from the out-
side arm minus the payoff from the current arm is greater than or equal to the
minimum payoff gain s, which is given by*®

(I)s =CA-=pB)+28p(1—p) if s <h.
_s/h . . .
2 s =C —ﬂ)—i—th(l_’;(l’m if s>h and s/h is an integer.

! 1 ! 1 1— 21
() s(1-458) =ca - p (1+2550) + 2 (o2 — (0 + k'),

if s>h,s/h is n%t ian integer, where s/h <l <s/h+ 1,1 is an integer, and
— rd—p)B
p 1-28p2—B+2B,++/ (1-4Bp2—p+4pp)(1—B)

27 An interesting extension is to limit the number of switchings, combined with the finite
horizon. One ramification of a finite number of switching opportunities is that the optimal
switching policy will depend on the number of remaining switching opportunities. In fact, if
other things are the same, it is expected that the minimum payoff gain for agent to switch
arms is higher as the number of remaining switching opportunity diminishes. This is because
the value of waiting increases as the opportunity to switch arms is smaller. However, if the
horizon is finite, the optimal switching policy is expected to dictate agent to switch even at
a smaller payoff gain as the horizon gets shorter. Hence the finite life of switching opportu-
nities and the finite horizon conflict with each other in determining the optimal threshold to
switch arms: the former is expected to increase the optimal threshold as the number of switch-
ing opportunities diminishes, while the latter is expected to affect the optimal threshold in the
opposite way.

28 To implement the proposed policy, plug the relevant parameters of the model to the equa-
tion in Theorem 2 and solve the roots of the polynomial equation by numerical approximation
methods such as Brent’s method (Brent (1973)) and Secant method (Press et al. (1992)).
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The model falls short on the following ground. First, although the model-
ling strategy here — symmetric-armed bandit — enables the derivation of the
implicit solution of the underlying bandit model, it is limited in extending its
result to the problem where alternatives are not symmetric. More interesting
and realistic case would be that arms are heterogeneous. For example, differ-
ent jobs have different wage growth paths. Projects have different dynamics of
development. If the model allows such asymmetry, the minimum payoft gains
will be a function of the state level of each arm.

Second, the obvious shortcoming of the model is the unrealism of the two-
arm framework. For example, workers typically do not switch between the
same two jobs over the life cycle of employment. Although one may argue
that these two arms are the result of the agent’s prior search from an outside
distribution of alternatives, the question then is whether this simple two-arm
framework and its theoretical implications can be interpreted within a proper
search framework as in Mortensen (1988) and Jovanovic (1979). Hence an
interesting extension of the model is to incorporate mismatch theory in this
model. Suppose that the outside arms arises from a stationary distribution.
Hence ex ante all arms must offer the same initial payoff. However, once an
arm commences, the evolution of payoffs are determined by two distinct sto-
chastic processes — i.c., by a random walk component, which is exogenously
given, and a learning component, which arises from Bayesian updating. With
the further assumption that changes of arms entail an irrecoverable switching
cost, this framework clearly maintains all the elements of the mismatch the-
ory (Jovanovic (1979)) and the exogenous evolution of payoffs in this model.
Whether the prediction of this model is still maintained (and if so under what
condition) is an open question worthwhile pursuing.

5.3 Asymptotically Optimal Policy

Finally many researches in the literature have attempted to find the nearly
optimal policy by approximation. Such near-optimal solutions often exist
even in the problem where finding an exact optimal solution is NP-hard.
Although the merit of such an approach is to maintain the general struc-
ture of the problem, its finite-sample performance is often not as good as its
asymptotic performance. However, a simple heuristic whose performance is
arbitrarily close to optimal policy has advantage in practical application.
When only one arm can be selected each time in n-armed bandit prob-
lem, Agrawal et al. (1988) constructed the policy that attains the asymptotic
lower bound of the regret for every fixed unknown parameters (01, 6, ..., 6,)
of arms so that the total switching cost up to time ¢ is of a smaller order
than the regret. The regret is nothing but the difference between the sum
of expected payoffs and the sum of pay-offs from the best arm, which is
unknown a priori. This construction was originally developed by Lai and
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Robbins (1985). The switching regret is the corresponding switching costs
when true parameters are unknown. More specifically, Agrawal et al. (1988)
divided time into “frames” and further divided each frame f into blocks of

equal length max{f, 1} such that ms—m;_; = [(2f2 —2(f‘1)2) /f] nf for f>

1 where m s denotes the time instant at the end of frame f. The pair (f,i)
denotes block i in frame f. The time instant  when (f, i) begins is a com-
parison instant at which upper confidence bounds U; for the expected payoff
wn(9;) is computed and the arm with the largest U; is selected for the entire
block (f,i). Agrawal et al. (1988) showed that the proposed policy is asymp-
totically optimal.

The upper bound U; used by Agrawal et al. (1988) is identical to that of
Lai and Robbins (1985) and does not involve the horizon or discount factor.
Lai (1987) improved the finite-sample performance of the policy designed by
Agrawal et al. (1988) by incorporating the horizon in computing U;. Brezzi
and Lai (2002) took one step further and extended the definition of blocks
used in Agrawal et al. (1988) by incorporating the basic parameters of the
model to compute the upper bound. They showed these modifications of
the basic structure of block allocation scheme of approximation provide a
nearly optimal solution to the bandit problem in the presence of switching
costs.

Agrawal et al. (1990) extended Agrawal et al. (1988) to incorporate mul-
tiple plays of arms at a time. If the underlying parameters are unknown and
n of n arms, n <n, are to be selected at each time, the optimal policy should
play the best i arms. Since the best arms are unknown a priori, the sampling
regret can be defined as the difference between the sum of expected payoffs
and the sum of payoffs from the best 7 arms. Hence the criterion for the opti-
mal policy is to minimize the “total regret”, which is the sum of sampling
regret and switching regret. Clearly a uniformly good policy is the one that
minimizes the total regret for the entire range of unknown parameters, which
is impossible to find. Agrawal et al. (1990) constructed an allocation scheme
that achieves this bound asymptotically as follows. Clearly any asymptotically
efficient policy must ensure that the number of plays of inferior arms must be
very small. However, since the agent does not know a priori the time interval
in which inferior arms are played, the plays of any arms are grouped together
in a “block” of time interval in such a way that the contribution to switching
costs by a particular arm must be very small. The block allocation scheme by
Agrawal et al. (1990) chooses the interval of time in which the same arm is
played such that the expected number of plays of inferior arms is controlled
under a upper bound. As a consequence, the expected number of switches is
controlled correspondingly and is of smaller order than the regret. Using this
result, Agrawal et al. (1990), similar to Agrawal et al. (1988), showed that the
proposed allocation scheme is asymptotically optimal.
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6 CONCLUSIONS

This paper surveys the literature of the bandit problem and its related lit-
erature, focusing on the recent development on the bandit problem in the
presence of switching costs. Switching costs between arms not only make
the index policy inoptimal, but also renders the search for the optimal pol-
icy computationally infeasible. As a response to this challenge, researchers
have taken three different ways to get the optimal policy as close as possible;
characterization of the optimal policy, exact derivation of the optimal policy
in the restricted environments, and finally approximation of optimal policy.
Characterization of the optimal policy is expected to guide the future research
for the optimal policy. While the exact derivation of the optimal policy is pos-
sible in restricted environments, these very restrictions limit the applicability
of the models. Asymptotic approaches are expected to complement the above
two approaches. Although the finite-sample performance of the proposed pol-
icy under asymptotic approaches is often not as good as its asymptotic per-
formance, its simple structure has practical advantages.
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