HW4: Answer Key 1) For the simulation in part 1 (FOV = 64×64 mm; matrix size = 64×64) what is the in-plane resolution? Resolution = FOV \div matrix size = [64 64]./[64 64] = 1 x 1 mm What is kmax? k_{max} is half the matrix size (since k = 0 is in the center of the matrix) times delta-k: delta-k = $$1/FOV = 1/.064 \text{ m} = 15.6 \text{ m}^{-1}$$; kmax = $32 * 15.6 \text{ m}^{-1} = 499 \text{ m}^{-1}$ 2) Although this isn't part of the simulation, if the slice-select gradient is 30 mT/m (3 G/cm) and the pulse bandwidth is 1 kHz, what is the slice thickness? slice thickness = pulse BW \div Gradient [converted to Hz] = BW / (γ G) = 2 kHz / (42.58 MHz/T * 32 mT/m) = $$2 \times 10^3$$ Hz / $(42.58 \times 10^6$ Hz/T * 32×10^{-3} T/m = 7.8×10^{-4} m = 1.5 mm 3) If the read-out gradient strength is 37 mT/m, what dwell time (time to acquire each next data point) would you need to generate a k-space step size of 15.6 m-1? $$\Delta k = \gamma G \Delta t$$ $$\Delta t = \Delta k/(\gamma G) = 15.6 \text{ m}^{-1}/(42.58 \text{ MHz/T}*37 \text{ mT/m}) = 15.6 \text{ m}^{-1}/42.58 \times 10^6 \text{Hz/T}*37 \times 10^{-3} \text{ T/m}$$ = $1.0 \times 10^{-5} \text{ Hz}^{-1} = 1.0 \times 10^{-5} \text{ s} = 10 \times 10^{-6} \text{ s} = 10 \text{ µs}$ 4) What is the sampling (digitization) bandwidth associated with the above dwell time? sampling BW = $$1 / \text{dwell time} = 1 / 10 \times 10^{-6} \text{ s} = 100,000 \text{ s}^{-1} = 100,000 \text{ Hz}$$ 5) What FOV corresponds to the k-space step size given in (3)? FOV = $$1/\Delta k = 1/15.6 \text{ m}^{-1} = 0.064 \text{ m} = 64 \text{ mm}$$ [Note that this matches the information given in (1).] 6) If you're acquiring 64 data-points, with the step-size calculated in part (4), what are the minimum and maximum k-values you read out? The data matrix is centered in k-space on k=0 $[m^{-1}]$. With a total matrix size of 64 x 64, there are 32 points to either side of 0, each separated by 15.6 m^{-1} , so the minimum k-space value is -32*15.6 m^{-1} = -499 m^{-1} , and k_{max} = 32*15.6 m^{-1} = 499 m^{-1} . Although, to be perfectly accurate, the 33^{rd} matrix element is actually 0, so there are 32 to the left and only 31 to the right ... but we can infer that "missing" 32^{nd} positive k value from the acquired negative k value, so functionally we have k-space spanning $\pm 500 \text{ m}^{-1}$. 7) Given k_{min} and k_{max} from (6), what is your resolution? resolution = 1 / FOV_k = 1 / $$(k_{max} - k_{min}) = 1/(998 \text{ m}^{-1}) = 0.001 \text{ m} = 1 \text{ mm}$$ Conveniently, this matches the answer to question #1. 8) And, finally ... 2 questions ... a) If you want to increase the resolution, keeping the FOV the same, what do you do? Keeping the FOV the same means keeping Δk the same, so $\gamma G \Delta t$ can't change. Increasing the resolution means increasing k_{max} , so you can just keep sampling longer ... or you can increase G while decreasing Δt (proportionately) so you're sampling faster and covering more of k-space in the same amount of time. b) if you want to increase the resolution, keeping the image matrix size the same (acquire same # of data points), what do you do to the strength of the read-out gradient? Increasing the resolution while keeping the matrix size the same means you have to cover more of k-space in the same number of steps. To do this, you need to take bigger k-space steps (increasing Δk), which means decreasing the FOV. Makes sense: higher resolution, same matrix size ... FOV must be smaller. To increase Δk , you need to increase the strength of the read-out gradient or decrease the sampling bandwidth (increase Δt). In lab we played with this idea by setting up a pulse sequence so that G was already as large as it could be. Then, to decrease the FOV (increase Δk), we needed to have a lower bandwidth (larger Δt).