Homework 3: Answer Key

1) Under a gradient, resonant frequency is linearly related to to position

$$
f(x)=G x
$$

wheref means frequency, x means position, and G is the gradient strength. We want to solve for thickness, or Δx (the range of tissues that absorbs the range of frequencies in our pulse). If $\Delta f=G^{*} \Delta x$, then $\Delta x=\Delta f / G$.

The only problem there is that bandwidth is in Hz and the gradient is given to us in units of field/distance, so the dimensions won't work out until we change the gradient to units of frequency per distance, so first we convert the gradient using the gyromagnetic ratio: $\mathrm{G}=2 \mathrm{G} / \mathrm{cm}^{*} 42.58 \mathrm{MHz} / \mathrm{T}=2 * 10^{-4} \mathrm{~T} / \mathrm{cm}^{*} 42.58^{*} 10^{6} \mathrm{~Hz} / \mathrm{T}=2 * 42.58 * 10^{-4 *} 10^{6} \mathrm{~T} / \mathrm{cm} \mathrm{Hz} / \mathrm{T}=8,516 \mathrm{~Hz} / \mathrm{cm}$. So the frequency changes by $8,500 \mathrm{~Hz}$ every time you move 1 centimeter. So a 1700 Hz bandwidth will interact with $1700 / 8500=0.2 \mathrm{~cm}$ or 2 mm of tissue.

Figuring out slice location follows the same logic. If the field is changing at a rate of $4,258 \mathrm{~Hz} / \mathrm{cm}$ (third line of the table), a carrier (center) frequency that is 17,032 different from my isocenter reference will move my slice 4 cm away from isocenter ... under ay gradient with a positive frequency offset, I'll find my slice 4 cm superior to isocenter.

gradient orientation	gradient strength	pulse carrier frequency	pulse bandwidth	slice orientation	slice location	slice thickness
x	$20 \mathrm{mT} / \mathrm{m}$	123.482000 MHz	2555 Hz	sagittal	isocenter	$\mathbf{3 ~ m m}$
y	$2 \mathrm{G} / \mathrm{cm}$	123.499032 MHz	1700 Hz	coronal	$\mathbf{2 ~ c m ~ A}$	$\mathbf{2 ~ m m}$
z	$10 \mathrm{mT} / \mathrm{m}$	123.499032 MHz	1700 Hz	axial	$\mathbf{4 c m ~ S}$	$\mathbf{4 ~ m m}$

2) Which of the above parameters needs to change if you do the experiment at 7 T instead of $3 T$? Just the carrier frequencies.
3) The echo forms when all of the spin isochromats everywhere in the pineapple slice are pointing the same direction (in phase). That's the only time we get a really big signal. In the illustrations I'm using, really, the echo should be green everywhere ... so the illustration below is more accurate than in the homework as assigned.

4) K-space is the 2D Fourier transform of the image. We'restill building intuition for for why this is true, but lower spatial frequencies are at the center of k-space, so the image on the right is closer to the center of k-space.

